

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

EXTENSIONS TO THE ICALENDAR DATA MODEL:
HIERARCHICAL SCHEDULES AND TEMPORALLY

RELATED EVENTS

by

Lesley W. Chiu

September 2012

 Thesis Co-Advisors: Thomas Otani
 Mantak Shing

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2012

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Extensions to the iCalendar Data Model: Hierarchical
Schedules and Temporally Related Events

5. FUNDING NUMBERS

6. AUTHOR(S) Lesley W. Chiu

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N/A______.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
Computer calendaring has matured to the point where people’s calendars are easily synchronized across devices,
shared between other people and organizations, and used to coordinate and schedule mutually agreeable meeting
times. These and other advances have made computer calendaring indispensable in people’s personal and
professional lives.
 Despite the recent advances in the scheduling capabilities of computer calendaring software, there are still
areas of scheduling that are not so well accomplished—or even possible—in today’s computer calendaring state of the
art. Non-fixed date template schedules, used in military exercise and contingency plans (e.g., POA&M), are
examples of schedules that are highly flexible and reusable. Because of their unique scheduling properties and
relationships, however, they cannot be modeled in mainstream computer calendaring tools. As a result, when
applying these types of schedules to a computer calendar, a great deal of human calculation, manual manipulation,
and data entry are required to get the schedule information into the calendar.

This thesis explores extensions to the iCalendar data model. These extensions will enable schedule
hierarchies and temporally related events to be modeled in mainstream calendaring applications. The results will
show considerable savings in human processing effort and that reduction in data-entry errors is possible.

14. SUBJECT TERMS Calendaring, Calendaring Extensions, Temporally Related Events,
Hierarchical Calendar Structure

15. NUMBER OF
PAGES

103

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

EXTENSIONS TO THE ICALENDAR DATA MODEL:
HIERARCHICAL SCHEDULES AND TEMPORALLY RELATED EVENTS

Lesley W. Chiu
Lieutenant Colonel, United States Marine Corps
B.S., University of California at San Diego, 1991

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2012

Author: Lesley W. Chiu

Approved by: Thomas Otani
Thesis Co-Advisor

Mantak Shing
Thesis Co-Advisor

Peter J. Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Computer calendaring has matured to the point where people’s calendars are easily

synchronized across devices, shared between other people and organizations, and used to

coordinate and schedule mutually agreeable meeting times. These and other advances

have made computer calendaring indispensable in people’s personal and professional

lives.

Despite the recent advances in the scheduling capabilities of computer

calendaring software, there are still areas of scheduling that are not so well

accomplished—or even possible—in today’s computer calendaring state of the art. Non-

fixed date template schedules, used in military exercise and contingency plans (e.g.,

POA&M), are examples of schedules that are highly flexible and reusable. Because of

their unique scheduling properties and relationships, however, they cannot be modeled in

mainstream computer calendaring tools. As a result, when applying these types of

schedules to a computer calendar, a great deal of human calculation, manual

manipulation, and data entry are required to get the schedule information into the

calendar.

This thesis explores extensions to the iCalendar data model. These extensions

will enable schedule hierarchies and temporally related events to be modeled in

mainstream calendaring applications. The results will show considerable savings in

human processing effort and that reduction in data-entry errors is possible.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ...1
B. ILLUSTRATION OF COMPLEX ORGANIZATIONAL PLANNING2
C. POA&M IMPLEMENATION IN ELECTRONIC CALENDARS4
D. ORGANIZATION OF THESIS ...6

II. BACKGROUND ..9
A. PLANNING, SCHEDULING, AND PROJECT MANAGEMENT9

1. Planning and Scheduling ...9
2. Sequencing ..10
3. Project Management ..10
4. Representational Views of Schedules ...11

B. COMPUTER–BASED PLANNING AND SCHEDULING TOOLS14
1. Project Management Software ...14
2. Spreadsheets ...15
3. Electronic Calendars ...16

C. ELECTRONIC CALENDARING ...17
1. History ...17
2. Current Capabilities and Features ...17
3. Mainstream Calendaring System Limitations18
4. Collaboration and Ubiquity ..19

D. ICALENDAR DATA FORMAT ..19
1. Background ..20
2. Data Model Description ...21

a. Core Object ..21
b. Calendar Components...21
c. Properties and Value Data Types ...22
d. iCalendar Extensions ..23

3. Adoption..23

III. REQUIREMENTS ...25
A. ASSUMPTIONS ...25
B. SYSTEM OVERVIEW ...26

1. Stakeholders ...26
a. Organizations ..26
b. Managers ...26
c. Individuals ...26

2. Actors ..27
a. Creator ...27
b. Editor ...27
c. Viewer ..27
d. System ..28

3. Functional Requirements (Features) ..28

 viii

4. Non-Functional Requirements ..29
C. USE CASES ..30

1. UC 1.5–Modify Parent Time Properties (Project Timeline
Shift) ..31

2. UC 3.3–Freeze Schedule ..31
3. UC 3.6–Reuse Archived or Existing Schedule32

IV. DESIGN ..33
A. TEMPORAL RELATION CONCEPTS ...33

1. SS–Start of Event Depends on Start of Independent Event36
2. SE–Start of Event Depends on End of Independent Event37
3. ES–End of Event Depends on Start of Independent Event38
4. EE–End of Event Depends on End of Independent Event39

B. DOMAIN MODEL ..39
C. DATA MODEL ..43
D. ICALENDAR EXTENSIONS...47

1. Schedule Properties ...48
2. Relational Event Properties ..49

V. COMPARATIVE ANALYSIS ..51
A. METHODOLOGY ..51
B. CASE STUDY ..51

1. Calendar Structure–Current Calendaring Capability53
a. Calendars ...53
b. Events ..53

2. Calendar Structure–Future Calendaring Capability54
a. Calendars (Schedules) ..54
b. Events ..55

C. APPLIED USE CASES ...56
1. Project Timeline Shift (UC1.5) ...56

a. Current Calendaring Method ...56
b. Future Calendaring Method ...57
c. Comparison of Results ..58

2. Reuse Archived or Existing Schedule (UC3.6)59
a. Current Calendaring Method ...59
b. Future Calendaring Method ...60
c. Comparison of Results ..60

VI. CONCLUSION ..61
A. SUMMARY OF WORK..61
B. RECOMMENDATIONS FOR FUTURE WORK62

1. Prototype ...62
2. XML Schema ..62

APPENDIX. LIST OF USE CASES ...63
A. UC 1.1–CREATE RELATIONAL EVENT ..63
B. UC 1.2–MODIFY STATIC EVENT TO RELATIONAL EVENT64
C. UC 1.3–MODIFY RELATIONAL EVENT TO STATIC EVENT65

 ix

D. UC 1.4–MODIFY TEMPORAL RELATIONSHIP BETWEEN
PARENT/CHILD EVENTS ..66

E. UC 1.5–MODIFY PARENT TEMPORAL PROPERTIES (MOVE
TIMELINE) ..67

F. UC 1.6–DELETE TEMPORAL EVENT (CHILD)68
G. UC 1.7–DELETE TEMPORAL EVENT (PARENT)69
H. UC 2.1–TOGGLE SELECTION OF VISUAL RELATIONSHIPS70
I. UC 2.2–GANTT CHART REPRESENTATION OF PROJECT71
J. UC 2.3–MATRIX VIEW OF PROJECT ...72
K. UC 2.4–SELECTIVE VIEWING OF SCHEDULES IN HIERARCHY ..73
L. UC 3.1–CREATE NEW CHILD SCHEDULE ...74
M. UC 3.2–MOVE SCHEDULE WITHIN THE HIERARCHY75
N. UC 3.3–FREEZE SCHEDULE ...76
O. UC 3.4–DELETE SCHEDULE (PROJECT CANCELLATION)77
P. UC 3.5–SAVE SCHEDULE (PROJECT ARCHIVAL)78
Q. UC 3.6–REUSE ARCHIVED OR EXISTING SCHEDULE79
R. UC 3.7–PUBLISH (SHARE) / SUBSCRIBE SCHEDULE80

LIST OF REFERENCES ..81

INITIAL DISTRIBUTION LIST ...83

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. POA&M Example with Fixed Dates. From [1] ...3
Figure 2. POA&M Template Example with Non-Specified Dates. From [2]4
Figure 3. POA&M in Differing Calendar Perspectives. From [3]5
Figure 4. Monthly View. From [7] ...12
Figure 5. Weekly View. From [7] ..12
Figure 6. Daily View. From [7] ..13
Figure 7. List (Agenda) View. From [8] ..13
Figure 8. Timeline View (Gantt Chart). From [7] ..14
Figure 9. Training Deployment Schedule Represented in Microsoft Excel16
Figure 10. Structure of iCalendar Data Model ..22
Figure 11. Landscape Scenario with Nonspecific Time Intervals33
Figure 12. Landscape Scenario with Specified Time Intervals ...34
Figure 13. Scope of Independent and Dependent Labeled Events35
Figure 14. Start to Start (SS) Interval Relationship...36
Figure 15. Start to Start (SS) Interval Relationship with Overlapping Events37
Figure 16. Start to End (SE) Interval Relationship ...38
Figure 17. End to Start (ES) Interval Relationship ...38
Figure 18. End to End (EE) Interval Relationship ..39
Figure 19. Current Calendaring Domain Model ...40
Figure 20. Organizational Scheduling Domain Model ...42
Figure 21. Current Calendar Data Model ..43
Figure 22. Proposed Calendar Data Model ...44
Figure 23. iCalendar Calendar Data Model ...45
Figure 24. iCalendar Data Model with Extended Classes ...45
Figure 25. Hierarchical Calendars and Time Dependent Events46
Figure 26. Property Extensions for Schedule and Relational Event Objects48
Figure 27. CS Conference Calendar ..52
Figure 28. CS Conference Calendar (2012) ..59

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Features Desired in Calendaring Systems..28
Table 2. Calendaring System Use Cases ..30
Table 3. Table of Related Events ...47
Table 4. Table of Conference Events and their Relationships (Current Calendaring) ..54
Table 5. Table of Conference Events and their Relationships (Future Calendaring)55
Table 6. UC 1.5 – Project Timeline Shift Comparative Effort58
Table 7. UC 3.6 – Reuse Archived or Existing Schedule Effort60

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

AI Artificial Intelligence

CS Computer Science

DE Dependent Event

EE End-to-End Relationship

ES End-to-Start Relationship

HTTP Hyper Text Transfer Protocol

IA Information Assurance

IE Independent Event

IETF Internet Engineering Task Force

IMC Internet Mail Consortium

MIME Multipurpose Internet Mail Extensions

NE Network Engineering

PC Planning Committee

PDA Personal Digital Assistant

PDI Personal Data Interchange

POA&M Plan of Action and Milestones

PM Project Management

RFC Request For Comment

SE Start-to-End Relationship

SMTP Simple Mail Transfer Protocol

SOA Service Oriented Architecture

SS Start-to-Start Relationship

UML Unified Modeling Language

URL Uniform Resource Locator

XML Extensible Markup Language

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

I started this program not knowing much about computer science. I know a bit

more now, but most of all I know I am humbled by all the great minds who have

pioneered this field, and those who continue to advance it.

I would like to thank the NPS Computer Science faculty for expanding the

dimensions of my brain by at least a base-2 order of magnitude. Also, thanks to my

fellow computer science peers, especially to LT Joey Carter (USN), Major Jon Petersen

(USMC), and Major Tarrell Giersch (USMC). Many team projects and long hours

behind the keyboard or white-board were made easier with your insight and humor. A

special thanks goes to my advisors for their patience and guidance throughout this thesis

work.

Most of all, I would like to thank my family for all their support and sacrifice. I

hope I can return the favor in some fashion later in life.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

Computer-based calendaring and scheduling is one of the most widely used and

mature examples of cloud-based collaboration in which users want to share a common

picture or perspective across multiple devices and with other users. With the

development and mainstream adoption of networked handheld computing devices

(personal digital assistants (PDA) and smartphones) users have embraced the ability to

easily share and synchronize their schedules with other users and devices. Because of

this, the reliance and dependency of these electronic calendars are increasing for people

both in their personal and professional lives.

Although electronic calendars have evolved considerably, they are still limited to

the basic capability of scheduling singular events. While this may be suitable for

individuals and their basic scheduling needs, it is inadequate for organizations and their

need for more robust planning and scheduling tools. Since organizations are hierarchical,

so are their schedules. Organizational planning requires the ability to assign tasks to

individuals and groups. These identified and assigned tasks are not independent from one

another. Likely, one identified task belonging to one group must precede or follow the

identified task of another. Thus, in project planning, one group’s schedule is not entirely

independent from the others in the organization and indeed many scheduled events are

essentially a series of relatable events. It is these temporal relationships in such series

that cannot be captured in today’s mainstream calendaring systems.

Mainstream calendaring systems are limited in two fundamental ways to better

support organizational planning. First, calendaring systems do not allow for hierarchical

relationships between schedules. Currently, calendaring systems allow multiple

schedules (calendars) to be created but only in a flat, unstructured way. This current state

is adequate for an individual or a small organization’s functional schedule breakdown

(e.g., an individual may have schedules for home, work, school), but is inadequate to

model the related schedules of a large-hierarchical organization.

 2

Secondly, calendaring systems today do not allow for temporal dependencies

between events. In planned projects, events are often related with other events

temporally (i.e., the start of one event occurs some time after the completion of another).

Although these individual events can be specified in today’s calendaring systems, their

sequencing relationships cannot. This lack of sequencing support is a big limitation to

using mainstream calendaring tools for project planning.

B. ILLUSTRATION OF COMPLEX ORGANIZATIONAL PLANNING

A Plan of Action and Milestones (POA&M) is a planning tool widely used

throughout the Department of Defense and industry to outline groups of interdependent

tasks to accomplish a larger event or goal. The POA&M template is used for acquisition

programs, military exercise planning, unit deployment procedures, and a host of other

applications. It is a planning tool to identify action-items necessary to complete a project

and track major milestones for project completion. They list the tasks, task owners,

relative time frame for start and/or completion, and identify any dependencies from one

task to another. They can include a hierarchy of tasks either grouped by functional area

or by functional task. Figure 1 shows an example of a POA&M with specified dates for

start and completion of each task.

 3

Figure 1. POA&M Example with Fixed Dates. From [1].

Many POA&Ms are pre-prepared for a specific purpose. For contingency

operations, POA&Ms serve as a pre-planned template of action. These template plans

are no different than a specific POA&M, such as that in Figure 1, except that the dates for

start and completion are relative to an overall trigger event. Figure 2 demonstrates this

idea. This POA&M template is for the operational deployment of a Marine Aircraft

Wing. The variable D in the Due/Trigger Date column stands for the deployment date.

Once the order for deployment has been given, and the deployment date is known, the

individual milestones will have specified dates for completion. These types of templates

are flexible and easily reusable. The temporal nature between events is specified and the

overall schedule can be easily applied to an actual deployment by specifying the trigger

event.

 4

Figure 2. POA&M Template Example with Non-Specified Dates. From [2].

C. POA&M IMPLEMENATION IN ELECTRONIC CALENDARS

POA&M’s can be created and managed by sophisticated software such as MS

Project™, but usually are constructed in table format in software such as MS Word™ or

Excel™. Only in large-scale acquisition, design, or construction projects is something as

powerful as MS Project used. Such project planning software is necessary when detailed

planning and cost estimation are a necessity. Due to their added expense and complexity

though, the use of such project planning software is often too much for organizations and

individuals not involved in formal project management disciplines.

For the average user, capturing the essential tasks, subdivision of work, critical

dates, and milestones is easily and naturally accomplished in a table format. Mainstream

word document and spreadsheet applications are more than adequate to do this. Once

created using these tools, POA&Ms are easily shared and communicated. Unfortunately,

however, using word processors and spreadsheets means that the POA&M is more of a

passive guide or outline, not an active one.

 5

Because the POA&M is a planning, scheduling, and tracking tool, it is desirable

to have this schedule information in a calendar. Calendars are an active planning tool.

People access them often, sometimes several times a day. Time-space relationships are

more easily seen in a calendar. Scheduling conflicts can be more easily identified when

separate schedules are applied to a single calendar.

A POA&M with specified dates such as in Figure 1 is easily put in a calendar.

Each task is entered as an event with specified start and end times. Depending on the

complexity of the POA&M and the number of assignable actors involved, different

calendars can be created for each actor, each visually identifiable from one another.

Once input in the calendar, various views of the POA&M could be generated (e.g.,

monthly, weekly, daily, and agenda). One considerably useful view found in project

management software (but not in calendaring software, even though it can be realized

with the information entered in the calendar) is a Gantt chart depicted in Figure 3.

Figure 3. POA&M in Differing Calendar Perspectives. From [3].

However, representing a POA&M template in a calendar, such as the one

described in Figure 2, is not possible without specifying fixed dates. In this example, the

 6

variable D (deployment date) needs to be specified and from that the remaining dates can

be determined. Once the deployment date is known, the calendar can be populated with

the tasks and milestones laid out in the POA&M. What if the deployment date shifts? Or

what if only a tentative date is given but the actual date is still to be determined? In these

cases, the calendar owner must painstakingly adjust each task and milestone relative to

the new deployment date. This may be no trivial task, depending on the number of

tasks/milestones involved.

If the offset relationships could be captured in the calendar (i.e., the task

“schedule ground transportation for deploying units to APOE”’—which is to occur

30 days prior to the deployment date), then the corrected dates for all of the temporally

related calendar events could be automatically adjusted when changes to the deployment

date are made. Calendaring systems today are not capable of this type of event modeling,

and therefore do not ideally support representation of a dynamic or reusable POA&M.

Simple extensions to the calendaring (open-source) data and conceptual model

would allow developers to include the functionality to specify these temporal

relationships. If this were to occur, the electronic calendar would easily augment and

enhance the POA&M process.

D. ORGANIZATION OF THESIS

Chapter II provides background information for project management and

scheduling. It also discusses the current state of the art of mainstream calendaring

systems by outlining common features and capabilities. Also the iCalendar data format, a

formal grammar used for calendar storage and data exchange, is presented. This is the

basis for which the set of proposed extensions would be built from.

Chapter III describes the requirements for the proposed set of extensions by

discussing how such a system can be used to better model these scheduling relationships

 7

and hierarchies. Stakeholders and Actors are identified and defined. System features and

functionality, and essential use cases are presented as formal requirements.

Chapter IV proposes a conceptual data and application model for the proposed

calendaring system.

Chapter V shows the benefits of these calendaring extensions by providing a case

study and applying selected use cases described in Chapter III. In this context, a

comparison between the two methodologies will reveal the benefit and utility these

extensions will provide.

Chapter VI concludes the thesis and provides recommendations for future

research and development.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

II. BACKGROUND

A. PLANNING, SCHEDULING, AND PROJECT MANAGEMENT

1. Planning and Scheduling

Planning is the process of satisfying requirements and future objectives through

the assignment of resources for future action. According to [4], planning seeks to answer

the following questions:

1) What product or service is to be provided?

2) On what scale will it be provided?

3) What resources will be made available?

Scheduling on the other hand, is the process of defining and modifying events

often for the purpose of objective realization, resource allocation, and constraint

management. Scheduling involves applying people, units, or resources to events and/or

locations and seeks to answer the following questions:

1) Which resources will be allocated to perform each task?

2) When will each task be performed?

Planning and scheduling permeate human behavior. We may do it informally

(i.e., without formal representation or tools)—e.g., making a mental note to mow the

lawn Saturday morning. More often, though, we associate planning and scheduling as a

more deliberate process of collaboration through the use of planning techniques and

scheduling tools (e.g., a major military spring offensive).

The primary artifact resulting from the planning and scheduling process is the

schedule—a document of planned order and timed events created through the process of

planning and scheduling. Bus schedule, conference, and television schedules are

examples of documents containing planned, timed events.

 10

2. Sequencing

When constraints are placed on the order of execution of events (i.e., Task A must

be completed before Task B can begin) the notion of the order of events is referred to as

sequencing. Sequencing can be explicitly outlined in a schedule. For example, the

outline of a bus schedule shows the time and location (bus stop) that the bus will make

throughout the day. Other schedules may not contain such specific ordering and are not

clear in establishing whether a sequential relationship exists between events. For

example, examination of someone’s personal schedule might indicate they will make a

bank stop at 3:30–3:45 p.m. and will be at the post office from 4:00–4:15 p.m. From the

information as presented, there is no way to tell if the bank stop must precede the postal

stop or if the order of the two events can be interchanged. It may turn out in fact that the

trip to the bank must be made first because the person’s intent is to obtain a cashier’s

check and mail it.

This type of sequencing or constraint modeling cannot be achieved in a

mainstream calendaring application. No enforcement mechanism or indication that the

bank visit must precede the post office visit (with the exception of specifying the need to

visit the bank in the notes or remarks section of the post office event) can be imposed.

Large-scale projects have many such sequencing relationships. Without a way to model

sequencing relationships in a scheduling tool, such as an electronic calendar, the potential

for unintended consequences increases as scheduling changes occur. In the previous

example, the onus remains on the calendar user to make sure not to go to the post office

first. This may seem obvious and intuitive, but when the people who execute the

schedule differ from the ones who originally wrote it, the sequencing relationships and

constraints may not be apparent and unintended consequences can develop as a result.

3. Project Management

Project Management (PM) is defined as a temporary endeavor undertaken to

produce a unique product, service, or result in a defined timeframe and cost. A problem

scheduled for solution [5]. PM is considered by many to be its own class of management

due to the uniqueness and specificity of what is being accomplished. Planning and

 11

scheduling are major facets of PM as is budgeting and cost estimation. For planning and

scheduling, the calendar is the primary tool.

PM mandates effective: communications, cooperation, teamwork, and trust [6].

The calendar is one of the main communication tools for PM. It is central to one of the

main constraints for a project—time, and indirectly linked to the financial constraint of

the project—cost.

PM software tools are very capable and offer features such as: Planning,

Tracking, and Monitoring; Reports (budget, cost, earned value analysis, critical path

analysis), Project calendar, What-if analysis, Multi-project analysis. These capabilities

are essential to a large and costly project. They offer the capability to plan and measure

the progress of the project to ensure the project comes in on time and on budget. For

those large-scale projects where tight control and detailed integration of activities,

schedules, and cost are necessary, dedicated PM software becomes essential.

For many individuals and organizations though, PM software can be too complex

or costly for use. An organization that is planning a weeklong conference, or a couple

that are planning a wedding, or a military unit that is planning a deployment overseas, all

need to approach their problem with a PM focus in mind. Planning and scheduling are

vital aspects of these less than large-scale projects, but the integration and control that are

inherent in PM software make them overkill for such use.

4. Representational Views of Schedules

Differing perspectives of a schedule are useful depending on the context in which

it is viewed. A near-term perspective will require display of only those events that are

immediately (i.e., minutes to hours) pending, whereas a long-term perspective will

require display of those events covering a substantially greater period (i.e., weeks to

months). Figures 4 through 6 represent these perspectives, or calendar views, which are

implemented in most mainstream calendaring tools.

 12

Figure 4. Monthly View. From [7].

Figure 5. Weekly View. From [7].

 13

Figure 6. Daily View. From [7].

The list view (Figure 7) and timeline view (Figure 8), however, are mostly only

found in project planning software.

Figure 7. List (Agenda) View. From [8].

 14

Figure 8. Timeline View (Gantt Chart). From [7].

Each of these calendar views can be applied to a schedule. Depending on the

length of the schedule, some views may not be as useful as others. This is especially true

for those views with fixed time scales (e.g., daily, weekly, and monthly). A monthly

view for example, will not provide much information for a schedule that takes place in

one 24-hour period. Other views, such as the timeline view, are scalable. The timeline

can be “stretched” or “shrunk” as necessary to provide a timeframe interval. Still other

views, such as the list view, have no scale and it is indeed difficult to realize the temporal

relation between events without cognitively analyzing dates and times.

B. COMPUTER-BASED PLANNING AND SCHEDULING TOOLS

1. Project Management Software

When tight control and detail of schedule and cost are required, project

management tools are necessary to plan, track, estimate, and budget the project. Project

management software includes these capabilities and some include more such as resource

identification and allocation, quality management, and communication and collaboration

tools. The key benefit to using project management software is its tight integration

primarily across resource scheduling and cost management.

A number of private vendors offer project management software solutions, the

most popular and well known is MS Project. There are also a number of open source

 15

software packages that are freely available. Some software solutions are meant to suit

small-scale projects and might support only single user, single machine use. Others are

more robust offering collaborative viewing and editing through web-based tools. Some

even integrate with corporate e-mail and calendaring systems, yet others can integrate

with billing and accounting systems.

Project management software generally offers robust scheduling tools and

capabilities. Scheduling categories such as tasks, phases, and milestones can be

delineated for particular events. Standard attributes such as start, end, and duration can

be applied, and a variety of preformatted and custom attributes can be to events as well.

Project management software also gives the ability to breakdown tasks into subtasks and

produce hierarchical relationships necessary for a work breakdown structure.

2. Spreadsheets

Spreadsheet and other applications that allow tabular formatting (i.e., word

processing programs) give users the ability to setup table layouts that support

organization of information into rows and columns. Primarily developed to handle

numeric computation, spreadsheet applications also allow organization of text, calendar

date, and other data. The flexibility allowed in formatting using spreadsheet tools makes

them desirable to plan, organize, and communicate schedule data. Calculations and

formulas can be applied, ranges can be sorted, and data sets can be filtered using

spreadsheet tools.

Schedules are easily represented using matrix representation tools such as MS

Excel (Figure 9). The schedule data, presented in a list view format, are easily sorted and

filtered. And the schedule entirety, which may span months or even years, can be

consolidated into a succinct list. Contingency schedules, like the POA&M templates

discussed in Chapter I, are easily created, applied, and reused.

 16

Figure 9. Training Deployment Schedule Represented in Microsoft Excel

3. Electronic Calendars

Calendars are a natural way for people to maintain schedules and collaborate

using them. Physical calendars come in all forms and sizes. Most commonly

encountered are paper-based monthly, weekly, and daily calendars. Others types of

calendars include large paper, poster, and dry-erase boards, setup in a variety of calendar

formats. These types of calendars are useful in conveying information to a larger

audience and can aid in providing sufficient room to include many details of a schedule if

needed. They allow for collaborative planning as their size can allow many people to

view and discuss around the calendar. Changes are easily made on dry-erase boards and

differing colors can ease in delineating information.

Electronic calendars mimic the capabilities of paper and other physical calendars.

Current calendar applications allow for nearly the same type of scheduling information

representation as physical calendars. Electronic calendars have the advantage of allowing

differing views of the same information without having to enter the scheduling

information more than once. Schedules in electronic form also have the advantage of

being easily copied and replicated for collaboration, sharing, and archiving.

 17

Computer applications such as Apple iCal and MS Outlook are commonly

encountered calendar applications for desktop and laptop computers. Other examples of

electronic calendars include cloud providers of e-mail such as Google and Yahoo.

Mobile electronic devices also have fairly robust calendaring applications, able to

maintain scheduling information synchronously with calendar host providers.

C. ELECTRONIC CALENDARING

1. History

Since the mid-1980s, electronic calendaring devices have augmented paper

calendars and schedules. The appeal of electronic calendars over time has been the ease

of recording, flexibility in changing, and the sharing of scheduling information. Early

groupware software such as the extension to WordPerfect and Novell Groupwise made

electronic calendaring appealing to desktop computer users and made collaboration of

schedules between them possible. The introduction and advancement of the PDA made it

possible for the electronic calendar to be portable. Web development of calendaring tools

and web hosting of calendars helped to extend calendar access and manipulation outside

of one’s personal desktop. Advances in mobile communication and technology have

brought the seamless integration of calendar data across desktop computers and a myriad

of mobile devices.

2. Current Capabilities and Features

Modern electronic calendaring systems allow individuals and groups to create,

edit, view, and share calendar events with one another. These calendars “live” in the

“cloud” and can be accessed from virtually any location by a computing device with a

connection to the Internet. Because of the ubiquity of portable and handheld computing

devices, the reliance and dependency of these electronic calendars are increasing for

people both in their personal and professional lives.

Calendaring systems today, are primarily good at capturing and displaying named

events—occurring at specific dates and times, with a specific duration. In addition, these

events can contain other attribute information such as the event location, reminder

 18

notifications, and associate a specific calendar for each recorded event (i.e., personal,

family, or work calendar). Most calendaring systems allow the ability to drag and drop

(cut and paste), events for rescheduling purposes. Recurrence parameters are also

commonly available allowing users to setup up recurring events such as weekly meetings,

monthly due dates, or semi-annual reminders.

Users can create multiple calendars allowing organization of differing schedule

information. Individual calendars can be selectively filtered on or off. This can provide a

means to see schedule conflicts or gain an understanding of event interaction.

Deselecting calendars can also help de-clutter the calendar. Calendars can be used on a

personal basis, or may be shared with others. Varying permissions can be assigned to

those that the calendar is shared with.

Calendar users also have the ability to create meeting requests or invite others to

scheduled events. These invitations are often sent via e-mail to the invitees. Options to

accept or reject the meeting request by the invitee can help the originator determine the

number of people, and more specifically who will be attending the event. Some systems

also have the capability to model organizational resources and reserve/schedule their use.

Examples of the resources that might be modeled are class/conference rooms, vehicles,

and support services.

3. Mainstream Calendaring System Limitations

Calendaring systems have evolved considerably in the past decade. Most of the

capabilities and features discussed previously have come about in the past 10 years.

These advancements have led to greater adoption and dependence of electronic calendars.

Despite these advancements, calendaring systems that limit their efficiency and

effectiveness, and in some cases preclude them from being used as a scheduling tool.

Aside from the deficiencies outlined in this paper, the lack of hierarchical

scheduling support and lack of temporally related events, current calendaring systems

also lack a robust way to manage a group of events. Mainstream calendaring systems do

not allow a way to select a group of events and manipulate them together. Each event

 19

needs to be manipulated separately. This method of manipulation can be grossly

inefficient, especially as the number of related events that require the common change

increases.

Differing graphical and categorical representation of events on calendaring

systems is also very limited using today’s mainstream calendaring tools. Calendaring

systems display events in the same chronological manner, not allowing differing font

sizes, colors, or types to be displayed on the calendar. Images and icons can also not be

used to represent graphically a calendar event. In project planning terms, event

categories such as task, phase, and milestones cannot be delineated.

4. Collaboration and Ubiquity

Collaboration using electronically distributed calendars first evolved within larger

business organizations with common enterprise e-mail systems. These calendars reside

on the e-mail server, are associated with a user’s e-mail account, and accessed through an

e-mail software suite. Because the calendars reside on the server, collaboration of

calendars could be achieved within the organization, but only within the scope that the e-

mail system would allow. Intra-organization calendar collaboration could be achieved,

but inter-organization collaboration of calendars was not natively available.

Collaboration of personal and social calendars has gained significant momentum

since the introduction of web calendaring. Similar to organizational e-mail systems, the

web calendar resides on a server and is accessible to the user through a web browser via a

URL. Any Internet-enabled computer can access these calendars with a web browser.

Additionally, smartphones and other Internet-capable portable devices can also access,

modify, and maintain synchronicity with the server-based calendar. With mobile

calendaring becoming more accessible and robust, users are integrating their work,

family, and social calendars in one framework.

D. ICALENDAR DATA FORMAT

The iCalendar format [9] is a nonproprietary, open-source specification for the

purpose of calendaring and scheduling data exchange. Because the wide variety of

 20

applications that contain some level of support for this standard, it is used in this paper as

the basis for representing a generic calendaring model (henceforth referred to as the

iCalendar model or iCalendar data model), agnostic of any particular implementation or

application. We introduce and examine the iCalendar model in this section, and extend

the model in Chapter IV to achieve hierarchical calendar and temporal event capability.

1. Background

The Internet Engineering Task Force (IETF) specification, RFC 5545, is MIME

content based and can be delivered using a number of protocols including, but not limited

to, SMTP and HTTP. It superseded an earlier version, IETF RFC 2445, in September

2009. RFC 2445 was based on the original attempt at open source modeling of

calendaring and scheduling information by the Internet Mail Consortium’s (IMC)

vCalendar format. It was renamed to iCalendar in RFC 2445 to avoid confusion.

The IMC (http://www.imc.org/pdi/) initiative in the mid-1990s sought cross-

platform interoperability of calendaring and scheduling data. It aimed to allow people

using different platforms and vendor specific calendaring software to send and receive

calendar and schedule information using different transports across the Internet.

Conceptually, across differing product domains, it would allow scheduling of meetings

using e-mail, distribution of project or event schedules, and web calendar publishing.

Originally derived from Versit’s (a consortium of industry leaders made up of Apple,

AT&T, Siemens, Lucent Technologies, and IBM) Personal Data Interchange (PDI)

technology, vCalendar was transferred to IMC for greater promotion and adoption by

industry.

Related specifications used in conjunction with iCalendar are iTIP [10] and iMIP

[11]. ITIP, RFC 2446 and later RFC 5546, defines how iCalendar is used to support

group scheduling (i.e., inviting users to a meeting and receiving their replies). IMIP,

RFC 2447 and later RFC 6047, is the specification that allows iTIP scheduling in

conjunction with e-mail.

 21

iCalendar is a text-based format with its own vocabulary and grammar. Data files

typically have an .ics file name extension. An equivalent XML-based specification- xCal

[12] - provides a one-to-one mapping of iCalendar definitions and constructs to xCal.

2. Data Model Description

a. Core Object

The iCalendar format consists of a top-level element called the Core

Object, a collection of calendaring and scheduling information. This top-level element

typically contains a single iCalendar object (calendar), but may consist of multiple

iCalendar objects. Each object contains a list of calendar properties and one or more

calendar components. A simple example of an iCalendar object is given below [9]:

 BEGIN:VCALENDAR
 VERSION:2.0
 PRODID:-//hacksw/handcal//NONSGML v1.0//EN
 BEGIN:VEVENT
 UID:19970610T172345Z-AF23B2@example.com
 DTSTAMP:19970610T172345Z
 DTSTART:19970714T170000Z
 DTEND:19970715T040000Z
 SUMMARY:Bastille Day Party
 END:VEVENT
 END:VCALENDAR

b. Calendar Components

Each object (calendar) can contain one or more iCalendar components.

These components can help describe properties of the object (e.g., TIME ZONE

component), are scheduling information (e.g., EVENT component), or augment

capabilities of the schedule component (i.e., an ALARM component associated with an

Event component).

The basic components most frequently encountered by people while using

calendaring tools are the Event and TO DO components. The Event component is a

scheduled event consisting of a specified start or end date and time. A TO DO

 22

component is a task with no necessary start or end date and time. Figure 10 shows the

iCalendar core object, object, and calendar component structure.

Figure 10. Structure of iCalendar Data Model

c. Properties and Value Data Types

Various properties apply to objects and calendar components. For

example, the property PRODID (product ID) is specific to describing the globally unique

identifier of the vendor for which the calendar object was created and is applicable only

to the calendar object. The value type is text. The DUE property is applicable only to a

TO DO component and can be specified only once. It has a DATE-TIME value type

which specifies a specific date and time (e.g., 19980118T230000—representing 2300 on

18 Jan 1998). Both of the previous properties could only occur once for the referenced

object or component. The iCalendar specification provides the semantic details for what

value types are associated for each property, and associates properties with calendar

objects and components.

 23

d. iCalendar Extensions

The iCalendar specification provides a framework for use and inclusion of

nonstandard properties. Nonstandard properties are named with the following prefix

“X-” and are encountered quite frequently when examining ics-files. No property exists

for the calendar object name, thus the nonstandard property X-WR-CALNAME is a fairly

standard way to describe the name of a calendar.

3. Adoption

iCalendar is the interoperable standard for calendar data interchange [13]. It is

used to interchange calendar information across mobile, desktop, and other devices.

Major calendar application providers all use it as a means to import/export calendar data,

both automatically through calendar synchronization, and manually through file

exchange.

Besides calendar software, the iCalendar standard has been used as a basis for the

web service-scheduling standard, WS Calendar 1.0 [14]. Service Oriented Architecture

(SOA) and Web Services is an increasingly growing framework for business automation.

SOA allows for a system of distributed solutions based on Web technologies on a global

scale. It achieves this through a universal model for representing logic and information

that is globally accepted.

SOA and Web services are also increasingly being used to automate and

coordinate physical services [14]. As a result, many semantic standards and protocols

have been established for use in industrial, home, and energy automation services. Such

examples include:

 Open Building Information Exchange (oBIX)–Enabling mechanical and

electrical control systems in buildings to communicate with enterprise

applications

 24

 Emergency Management–Enabling information exchange to advance

incident preparedness and response to emergency situations

 Energy Interoperation–Enabling the Collaborative and Transactive use of

Energy

 Web Services for Building Automation and Control Networks

(BACNet/WS)–Industrial and home automation standard

 OLE (Object Linking and Embedding) for Process Control Unified

Architecture (OPC-UA)–Industrial automation standard

Central to these types of physical services is the notion of scheduling. As this

domain of service grows, so too does the interaction and interdependencies amongst the

different service components. A common scheduling standard is imperative to ensure

their seamless integration and automation. WS-Calendar is the web service extension

that fulfills that.

 25

III. REQUIREMENTS

A. ASSUMPTIONS

The motivation for this work is based on the premise that the electronic calendar

is an individual’s primary computer-related scheduling tool of choice. The electronic

calendar gives every user the ability to easily share, add, selectively view, and overlay

schedules that no other tool can. It can exist seamlessly across multiple devices, and in

some cases at little to no cost to the user. For these reasons, it is believed that adoption of

a separate scheduling tool, which allows for time-dependent event relationships and

hierarchical schedules, will not take hold for the masses.

Indeed, the project planning software discussed earlier includes such capabilities;

due to cost and complexity, however, they remain outside mainstream use. A more

planetary approach is to add these capabilities to calendaring systems and allow ordinary

users more capability to perform project-planning type schedules using their primary

scheduling tool. By extending the capabilities of current calendaring systems to allow for

more robust scheduling capabilities we better satisfy the way the military (and other

organizations and institutions) develops and publishes exercise and contingency planning

schedules. Instead of an inefficient and ad hoc way of using and merging spreadsheet

scheduling information with electronic calendars, the set of extensions proposed would

allow military planners to build template schedules, use/reuse them as necessary, and

have them be represented in a variety of formats for publication and dissemination.

The following specification relies on the basic calendaring functionality and

capabilities described in Chapter II. It also relies on the iCalendar data model as basis for

implementation. Use cases and features for a generic calendaring system are specified at

the CalConnect website [15]. The requirements set forth are to be considered extensions

to the use cases that describe the requirements in the iCalendar model.

 26

B. SYSTEM OVERVIEW

The following requirements specification follows the Unified Process [16]

approach for software requirements specification, categorization, and documentation. It is

not meant to be an exhaustive or complete specification. Instead, we use it to help

illustrate and envision how such a calendaring system with the capabilities advocated

would be used and further reveal the motivation for why they are needed.

1. Stakeholders

a. Organizations

Planning and scheduling are key tasks for any organization. Tools that

allow for increased integration and visualization of integrable schedules will help

increase productivity and reduce misconceptions and errors. Many organizations have

made investments in corporate e-mail and calendaring software such as MS Outlook.

Other scalable solutions exist, as well, such as Google Apps for Business. Enhancements

to these calendaring tools will allow organizations to conduct more realistic large-scale

project-planning type efforts. Organizations (and even individuals) wishing to create and

re-use project schedule templates will be able to do so efficiently and quickly.

b. Managers

Managers are key decision makers and resource allocators within a project

framework. Tasks within the manager’s area of responsibility are done with higher-level

project constraints and decision points in mind. The manager’s framework and structure

for task accomplishment is subordinate to the overall project framework, and should be

modeled as such in a project schedule. These proposed calendaring tools will give

managers such integration.

c. Individuals

Whether the project manager, active participant, or outside contractor; all

individuals are stakeholders in the overall project. Changes that are made in the

overarching timeline will have ripple effects to all the participants involved. These

 27

changes can be quickly made to the schedule. Because events can be related temporally,

ripple effects can be made automatically, quickly, and accurately.

2. Actors

a. Creator

This user will be the schedule owner. The creator will have overall

authority over that particular schedule and any relevant subschedules. The creator will

also specify permissions, policy enforcement, and delegation of rights. Also, other

capabilities that are discussed later will be part of the creator’s purview, such as schedule

setting the schedule window or a schedule freeze. Note that it is possible to have more

than one creator for a particular schedule. The creator can also create component

schedules for subordinate organizational groups.

b. Editor

Editors will have most of the functionality that creators have. They can

set selected permissions and policies, and grant access to other users (up to editor only).

Editors, however, cannot grant creator access control and cannot set permissions and

policies in contradiction to what the creator has set. Editors can create subordinate

schedules, and both the creators of the existing schedule and the editor who created the

subordinate schedule become creators of the newly created schedule. The editor

permission will normally be given to subordinate managers or their delegates.

c. Viewer

A user who has been given permission to see the schedule only is a

viewer. Viewers have no ability to create or modify schedules or events. They can

however see subordinate schedules for which the user has been granted viewer

permission but cannot see the schedule of its parent. Project participants who do not have

schedule authority will typically fall in the viewer actor category.

 28

d. System

The System is the calendar application and its data store. The system can

be an enterprise-type calendar software application or can also be a stand-alone

application on a mobile device or computer. The system will be able to read and interpret

existing calendar data [9], as well as the extensions proposed in Chapter IV.

3. Functional Requirements (Features)

The software features herein are necessary to provide the type of functionality

desired in a system that provides the capabilities that are sought. A list of these essential

features can be found in Table 1.

Table 1. Features Desired in Calendaring Systems

Feature
ID

Feature Name Description

1.0 Display/View

 1.1 Toggle Selection of Visual Relationships Ability for user to selectively turn off/on the
display of temporal relationships. With this
feature turned off, the view will be less
cluttered.

 1.2 Gantt Chart Representation of Project Gantt representation is not currently a view
option for most mainstream calendars. This is a
vital viewing format for project management.

 1.3 Visual Distinction Between
Child/Parent/Static Events

It is important for users to quickly and easily
distinguish these types of event objects when
displayed on a calendar.

 1.4 Selective Display of Calendars Ability to show differing schedules in the
calendar hierarchy is needed. Show selections
will automatically cascade down the hierarchy
(i.e., when someone de-selects a calendar, that
de-selection will apply to all the children).
However user has selective control of any
schedule combination desired.

2.0 Permissions / Access Control
 2.1 Schedule Lock Ability to selectively prevent schedule changes.
 2.2 Version Control Ability to have version control over the project

schedule.
 2.3 Project Window Constraining Ability to set overarching time windows for

project schedule (i.e., constrain users from
scheduling events outside of the project
window).

 29

4. Non-Functional Requirements

Interoperability is a key feature of calendaring systems today. An event can be

saved and sent as an attachment to an e-mail and accepted into a receiving user’s

calendar. A calendar created in one application can be easily added to a differing

application. Any new calendaring system must also remain interoperable.

Interoperability is facilitated by standards (in our case [9]). Since we are discussing new

functional capabilities for calendaring systems, these must translate and work their way

back to the standard for interoperability to occur at this new level. In Chapter IV, we

discuss how the iCalendar format [9] can be extended to facilitate these new capabilities.

Any long-term use and pseudo adoption of these extensions must eventually work their

way back to the standard to be incorporated for long-term durable success.

Even being implemented as part of the standard vocabulary, manufacturers of

calendaring systems will adopt these new capabilities at different times or not at all. A

standard way to handle the migration of information from an application using time

dependent event relationships and hierarchical calendars to another that does not must be

allowed for. To not allow for it at all would be undesirable. Instead, it is more probable

to conceive of the application converting time dependent events to static events and

hierarchical schedules to individual calendars.

Interoperability between other sources or representations of calendaring data is

also desired. This is particularly useful for template schedules. As discussed in the

introduction, military planners use the POA&M format for developing and maintaining

schedules for operations and exercises. Although there is no single POA&M format,

arguably all contain the necessary information to be replicated in a calendaring system

with these new capabilities. Doing so in a quick and seamless way is also a requirement.

Calendar applications must continue to be usable by the mainstream masses of

users. It is doubtful that the new calendaring system tools will be used by any great

majority of all users therefore the new capabilities must not distract or confuse those who

have no intent to use them. A separate mode of operation is not desired but to some

degree this is probably a bit realistic. For ordinary calendars and events, these new

 30

capabilities will not be visible or accessible. Only when working within the defined

scope of the project schedule will these features be apparent and useful.

C. USE CASES

Use cases are text stories used to describe the prescribed system and record the

requirements expected of such a system. The method for use case development and

documentation is followed from Larman [16]. Table 2 lists the use cases considered

unique and essential for a calendaring system that features time dependent events and

hierarchical calendars. Note the primary actor listed in Table 2 is the lowest actor listed

(e.g., Viewer implies editor and owner are also actors). A complete description of all use

cases can be found in the Appendix.

Table 2. Calendaring System Use Cases

Use Case
ID

Use Case Name Primary
Actor

Complexity

1.0 Creation and Modification of Temporal
Events

 1.1 Create Relational Event Editor Low
 1.2 Modify Static Event to Relational Event Editor Low
 1.3 Modify Relational Event to Static Event Editor Low
 1.4 Modify Temporal Relationship Between

Parent/Child Events
Editor Medium

 1.5 Modify Parent Time Properties (Project
Timeline Shift)

Owner High

 1.6 Delete Temporal Event (Child) Editor Low
 1.7 Delete Temporal Event (Parent) Editor Medium

2.0 Visual Requirements
 2.1 Toggle Selection of Visual Relationships Editor Medium
 2.2 Gantt Chart Representation of Project Viewer Low
 2.3 Matrix View of Project Viewer Low
 2.4 Selective Viewing of Schedules in Hierarchy Viewer Low

3.0 Schedule Hierarchy
 3.1 Create New Child Schedule Editor Medium
 3.2 Move Schedule Within the Hierarchy Owner Medium
 3.3 Freeze Schedule Owner Medium
 3.4 Delete Schedule (Project Cancellation) Owner High
 3.5 Save Schedule (Project Archival) Editor High
 3.6 Reuse Archived or Existing Schedule Editor High
 3.7 Publish (Share) / Subscribe Schedule Editor Medium

 31

Out of the many use cases presented in Table 2, we focus on three use cases that

highlight the benefits of the proposed capabilities outlined in this paper. These use cases

show the utility for relating events temporally for projects as well as illustrates why

structuring schedules hierarchically makes sense.

1. UC 1.5–Modify Parent Time Properties (Project Timeline Shift)

Changes in project timelines occur all too often, for a variety of reasons. They are

moved ahead of their original timeline because of urgency or necessity, or they are

delayed because of resource constraints. Projects that revolve around a critical event,

such as the day of airlift for a military unit’s pre-deployment preparation schedule, can

have repercussions throughout the schedule if that critical event is changed.

When the entire project timeline is moved-up or delayed by a certain time period,

and the internal structure of the project is to be kept intact, it would be desirable to be

able to adjust the critical event and have the rest of the project adjust accordingly. This is

especially true because today’s calendaring tools make such a shift in timeline

cumbersome and error prone. Instead of just modifying the critical event, each individual

event is required to be changed. For some small projects occurring in a relatively tight

timeframe, the total amount of project restructuring may not be too difficult. But for

larger projects that span across months to years, the amount of restructuring can be

difficult, tedious, and prone to error with each adjustment.

2. UC 3.3–Freeze Schedule

For projects that involve complex organizational planning and interaction, the

ability to deny changes to the schedule(s) may be an indispensable feature. Change

management [17] requires some degree of control by the project manager and its

participants. Large projects—with many suborganizations, events, and planners—can

have unintended and unknown repercussions when even the smallest change is made to a

schedule. For these large projects, managers need tools to enforce change or to prevent

changes.

 32

Freezing the schedule is one method to prevent changes. A schedule freeze,

initiated by the owner of the schedule, would prevent changes from occurring until either

the freeze is lifted, or unless a particular change is approved (by the owner). The freeze

can either cascade throughout the schedule structure or could be imposed on a single

schedule.

The application of the schedule freeze to a project schedule may be initiated for a

variety of reasons. One such reason is to initiate a review of a schedule for quality

assurance or management approval. Another reason for a schedule freeze may be due to

the process methodology for a project. Organizations that follow a waterfall-type

process, where project planning may be a deliberate phase in the overall project

execution, may rely on the ability to freeze the schedule. This is not to say that further

schedule changes cannot or should not be made, but rather that enforcement of a change

management process is necessary to effect the change. These types of processes are

designed to reduce or eliminate the unintended consequences that happen when schedule

changes are made

3. UC 3.6–Reuse Archived or Existing Schedule

Once a schedule has been developed and created, it will likely be used as a model

for some future reoccurrence of that event. This is especially true for military planning.

Exercise and contingency planners generally follow the same approach for developing

exercise and contingency plans—obtain what has been done previously (e.g., previous

planning templates), analyze and reuse those portions that are relevant (updating them

with current information). For the schedules associated with these plans, often the same

milestones, phases, and tasks will be used to make and track progress.

Calendaring tools that captured the type of information in Figure 2 (POA&M with

non-specified dates) would allow users to rapidly create schedules with relevant dates and

times by giving specific date and time information to those variables left unspecified in

the template schedule. The template schedule would need to contain the appropriate

temporal event relationships (Chapter IV) necessary to produce the schedule structure.

 33

IV. DESIGN

A. TEMPORAL RELATION CONCEPTS

In order to achieve the desired functionalities and capabilities described in

Chapter III, the following concepts are presented. The type of temporal dependency, the

duration of the event, and the time offset between events are necessary to establish the

dependency between events. Inheritance properties are necessary to establish

relationships between the independent and dependent events. It is also a necessary

concept for the establishment of calendar hierarchies.

Project scheduling can be difficult and complex. Physical, technological, and

resource constraints affect the overall project [18]. The project schedule is directly

affected by time and resource available. The scheduling of an event may be based on

necessary preconditions or post conditions that must adhered to. In this thesis, we limit

our study to modeling deterministic time constraints.

In a new-home landscape project (Figure 11), for example, the sprinkler pipes and

heads must be installed sometime after the trenches have been dug. After the sprinklers

have been installed, the soil can be watered; then one day (24-hours) later, the sod can be

put down. The first two sequences have no specific interval between events, only that

they are performed in sequence (with the start of one not occurring until after the

completion of the other).

Figure 11. Landscape Scenario with Nonspecific Time Intervals

[19] refers to the interval between such events as the minimum time lag. For this

example, the minimum time lag is zero, meaning the events can occur one after the other

 34

with no lag between them. This is not necessarily always the case, however. If, for

example, the epoxy used to seal and adhere the sprinkler pipes required a 12-hour cure

time, the minimum time lag would be 12 hours and the watering of the soil could begin

no earlier than 12 hours after the sprinklers were installed. These types of interval

relationships are nonspecific and cannot be modeled as such using calendaring tools.

Although potentially of use for automated or computer assisted scheduling optimization,

we avoid any ambiguous dependencies because of their complexity and diminished

benefits in real-world project scheduling.

 We instead focus on fixed intervals, such as the time interval between the

watering of the soil and the laying of the sod. In Figure 11, this interval is specified to

exactly one day (i.e., one day after the soil has finished being watered, the sod can be put

in). These types of fixed interval relationships can conceivably be modeled using

mainstream calendaring tools. Whereas the non-specified interval constraints could not

be easily modeled using calendaring tools, the application of fixed time intervals to

uncertain time intervals would be more indicative of an actual project schedule and could

be modeled using calendaring tools. The landscape scenario with specific time intervals

is shown in Figure 12. This scenario can be implemented in mainstream calendaring

tools.

Figure 12. Landscape Scenario with Specified Time Intervals

Of interest, therefore, are those time-dependent event relationships that are

unambiguously defined and can be modeled and displayed in a calendaring tool.

Understanding that a scheduled event can be displayed on a calendar given two out of the

three characteristics (start time, duration, or end time), calendar events can be categorized

as follows:

 35

1. The start time and the end time are known.

2. The event duration and either the start or end time is known.

3. The event duration is known and the start or end time can be calculated

based on an interval from another event’s start or end time.

Categories 1 and 2 exist in current calendaring tools. Category 3 is a time-

dependent relationship between two events. The independent event has start and end

properties (specified or derived) and the dependent event’s start and end times can be

derived from the event’s duration and interval relationship with the independent event. It

is important to note that the label of independent and dependent event has scope only in

reference to the binary relationship between two relatable events. Within the scope of

Events 2 and 3 (Figure 13), for example, Event 2 is the independent event and Event 3 is

the dependent event. Outside of this binary relationship, these identifying labels do not

necessarily hold. For example, between Events 1 and 2, Event 2 is the dependent event

and between Events 3 and 4, Event 3 is the independent event.

Figure 13. Scope of Independent and Dependent Labeled Events

Exploring Category 3 type events further, it can be seen that four interval

relationships can be specified between two pairs of relatable events—either the

dependent event’s start time is determined from the independent event’s start (SS) or end

(SE) time, or the dependent event’s end time is determined from the independent event’s

 36

start (ES) or end (EE) time. The interval relationships: SS, SE, ES, and EE describe the

temporal relationship between the dependent event and the independent event. The first

letter of the interval relationship describes the dependent event’s (DE) related time

property (either S–start or E–end), and the second letter describes the independent event’s

(IE) related time property. The second part of the interval relationship is the offset value.

This value is specified as some amount of time, either positive or negative. A positive

offset value refers to a time interval in the future, whereas a negative offset value refers

to a time interval in the past (from the intended reference point). Each of the four

relationship possibilities is discussed in more detail below.

1. SS–Start of Event Depends on Start of Independent Event

Figure 14 describes the SS interval relationship. This type of interval relationship

is one of the more frequently used and encountered in normal scheduling. The

illustration in Figure 14.a says, “the dependent event starts sometime after the

independent event starts.” This is achieved with a SS interval relationship and a positive

offset value. As an example, this type of time constraint would be useful for staggering

departure times for a military lift movement involving multiple waves of aircraft. The

illustration in Figure 14.b shows how the SS interval relationship can be used with a

negative offset. This says to the effect, “the dependent event starts sometime before the

independent event starts.”

Figure 14. Start to Start (SS) Interval Relationship

 37

Although Figure 14 shows the two events occurring one after the other, it does not

mean to imply that the events cannot occur concurrently. Figure 15 shows the SS interval

relationship with events overlapping.

Figure 15. Start to Start (SS) Interval Relationship with Overlapping Events

2. SE–Start of Event Depends on End of Independent Event

Figure 16 describes the SE interval relationship. The illustration in Figure 16.a is

fairly intuitive and occurs frequently in describing events in series. It says, “the

dependent event starts sometime after the independent event ends.” This is achieved with

a SE interval relationship and a positive offset value. An example of this type of time

constraint would be useful for round robin scheduling of a single aircraft travelling to

multiple destinations. The independent event is the first leg of the trip, the interval is the

time on deck at the airport, and the dependent event is the subsequent leg. The

illustration in Figure 16.b says to the effect, “the dependent event starts sometime before

the independent event ends.” Continuing on the aviation example, this type of interval

relationship would be useful to schedule a flight departure 30 minutes before another

flight’s arrival to prevent both aircraft being at the same gate at the same time.

 38

Figure 16. Start to End (SE) Interval Relationship

3. ES–End of Event Depends on Start of Independent Event

Figure 17 describes the ES interval relationship. The relationship is essentially

that described by the SE relationship but with the dependencies reversed. For example,

instead of specifying “the dependent event starts sometime after the independent event

ends,” the same can be achieved by saying “the independent event starts sometime after

the dependent event ends” (Figure 17.a). The effect is the same, but the role of

independent and dependent event is reversed in the SE to ES relationship. The same is

true for Figure 17.b.

Figure 17. End to Start (ES) Interval Relationship

DE

IE

b. SE Interval with (-) Offset

IE DE

a. SE Interval with (+) Offset

IE DE

b. ES Interval with (+) Offset

DE IE

a. ES Interval with (-) Offset

 39

4. EE–End of Event Depends on End of Independent Event

Figure 18 describes the EE interval relationship. This relationship is similar to the

SS interval relationship but the time properties for both events are specified in terms of

the end vice start. Figure 18.a essentially says “the dependent event must end some time

after the independent event ends.” This is achieved with an EE interval relationship and a

positive offset value. As an example, this type of time constraint would be useful for

staggering arrival times for a military lift movement involving multiple waves of aircraft.

Figure 18.b says to the effect, “the dependent event ends sometime before the

independent event ends” and can be achieved with an EE interval relationship with a

negative offset.

Figure 18. End to End (EE) Interval Relationship

B. DOMAIN MODEL

With respect to delineating schedules into individual calendars and scheduling

discrete events, the domain model shown in Figure 19 can describe today’s mainstream

calendaring software approach. The model is described using Unified Modeling

Language (UML) notation [16]. A person organizes schedule information in separate

calendars. These calendars are standalone or shared. If shared, these calendars can

appear to be native to a user in calendar application, allowing them to modify events and

their properties seamlessly depending on the permission level granted. EVENTS and

TASKS (TO DO) are contained in their respective calendars. This application, whether it

is an application on a PC, mobile device, or web app displays the calendar(s) and the

events and tasks belonging to that calendar.

IE DE

a. EE Interval with (+) Offset

DE IE

b. EE Interval with (-) Offset

 40

Figure 19. Current Calendaring Domain Model

The model shown above is simplified, but it captures enough details that are

relevant to the topics studied in this thesis. For example, free/busy scheduling is a feature

that is found on many calendaring systems. This feature helps to identify available time

among a group of users and resources in order to schedule a meeting among the required

participants. We leave this and other aspects of modern calendaring software out of the

model for simplicity. We only concern ourselves with those aspects related to managing

project schedules within a hierarchical organization and relatable time dependent events.

 41

The domain model shown in Figure 19 satisfies the needs of individual scheduling

and to some degree the collaborative scheduling needs among individuals. For

organizational planning however, this simplified model has limitations. Since in this

model, only users are represented, a user account must then represent that organization.

The members of that organization and the suborganizations beneath it cannot adequately

be represented in this model. Time-series events and other relatable characteristics

between events in different calendars are not accounted for in this model.

The domain model shown in Figure 20 attempts to more accurately illustrate the

situation for which organizations manage projects and project schedules. It contrasts the

domain model in Figure 19 in several ways. First, the term schedule is used as the

container of events instead of calendar. In some respects, these two terms are fairly

synonymous, but the characterization of schedule is more appropriate for a group of

relatable tasks and events, especially with respect to project management. The distinction

between schedule and calendar is also useful for implementation purposes because the

calendar in terms of [9] specifies the situation and condition for the current calendaring

implementation paradigm. The model presented in Figure 20, and the extensions

proposed in this chapter, are meant to augment rather than replace current calendaring

practices.

 42

Figure 20. Organizational Scheduling Domain Model

The other key differences are the introduction of organization and project in the

domain model. In the previous model, organization and project can be implied based on

who the person is and what name they give the calendar. For example, if the person is

the project manager for a project called CAL, and a calendar is created called CAL

Master Calendar, the organization and project name can be implied from the calendar

title.

Another key concept is the idea that the project and schedule belong to the

organization instead of the person. Users will inevitably create and modify the schedule,

but the organization retains ownership. This does not preclude a single user from

following this model and utilizing the proposed features. In that case, the user and

organization would be synonymous.

 43

Lastly, the publish and subscribe concept is used to disseminate the project

schedule to those needing it vice the idea of sharing a calendar. The traditional notion of

sharing a calendar on an enterprise calendaring system extended to other users on that

system only. Although some applications (Google Calendar) still call it “share,” the

concept being used is publish and subscribe. This concept serves to share the calendar

with any users with an e-mail address, regardless of whether they are in or outside of

your network. Semantically, publishing a schedule has a more authoritative and formal

connotation than sharing a schedule. This is desirable considering the project schedule

may have a number of participants, both internal and external of the project owner.

C. DATA MODEL

To achieve the capabilities inferred by the requirements specified in Chapter III

(hierarchically-related calendars and time dependent events), new calendar types and

calendar components need to augment the existing data model. Currently, the

relationship between calendars and events (with respect to [9]) can be viewed as depicted

in Figure 21. As illustrated, a calendar is composed of many events. Specifically, the

calendar can have zero or more event objects. Although calendars can contain other

components (e.g., TO DO, alarms, journals), we show only the relationship between the

CALENDAR and the EVENT component to focus the discussion.

Figure 21. Current Calendar Data Model

 44

Figure 22 shows a more robust approach to modeling subdivided schedules and

time dependent events. As discussed earlier, we use the concept of a SCHEDULE

instead of the CALENDAR as in Figure 16. Like the CALENDAR, the SCHEDULE

object is composed of EVENTS, but also may contain zero or many SCHEDULES. This

class self-reference gives the ability to create a hierarchical schedule structure that can

mimic an organization’s structure.

Figure 22. Proposed Calendar Data Model

The same self-referencing relation is applied to the EVENT class. EVENTS that

depend on the start or end of another event will have a two-way reference to that object

and will specify the type of dependent relation (i.e., SS, SE, EE, or ES) and the offset

time.

The more complete iCalendar data model is shown in Figure 23. The model

shows the calendar application consisting of an aggregation of calendars. Each calendar

is made up of an aggregation of calendar components: JOURNAL, TO DO, EVENT,

ALARM, TIME ZONE, and FREE BUSY. Figure 24 illustrates the extensions to the

iCalendar data model. In object-oriented terms, the schedule is a child class of the

calendar, consisting of the same components as the schedule, but also containing a new

component—the relational event.

 45

Figure 23. iCalendar Calendar Data Model

Figure 24. iCalendar Data Model with Extended Classes

 46

With a more robust scheduling data model, the type of scheduling relationships

inherent in a multi-tiered organization can be realized. Figure 25 gives a generic example

of how separate but related schedules may have interacting event dependencies within

their respective schedules. In this example, the objects that are shaded (Schedule 1 and

Events 1.0, 1.3, 2.a, and 3.a) are parent objects with children. Events 1.3, 2.a, and 3.a

have parents themselves as well as children.

Schedule 1 has two component calendars, Schedules 2 and 3. Not only is there a

relationship established between the parent and child schedules, but also Schedule 1

properties can be inherited by its children. Although not shown, Schedules 2 and 3 could

also have subschedules.

The types of event relationships are shown in the adjoining lines connecting the

events. Event 1.0 spans across the majority of the timeline and is illustrative of a project

with overall project start and end times. Events 1.1 and 1.3 show the potential for pre-

start and post-ending actions. The ES relationship between Events 1.1 and 1.0 indicates

the end (E) of Event 1.1 must be complete before the start (S) of Event 1.0. Although not

shown, an offset would be specified to determine the amount of time required between

the end of Event 1.1 and the start of Event 1.0. In this case, the offset would be 0

indicating that Event 1.1 would be scheduled to complete right when Event 1.0 begins.

Figure 25. Hierarchical Calendars and Time Dependent Events

 47

Dependent events can link between schedules. Event 2.a is part of Schedule 2 but

its time dependency is with Event 1.0 in Schedule 1. Similarly, Event 3.a in Schedule 3

is dependent on Event 1.3 in Schedule 1. Event 1.3 also illustrates that dependent events

can also have dependencies themselves. Event 1.3 depends on the end of Event 1.0 and

similarly Event 3.a depends on the start of Event 1.3. The illustration in Figure 25 can be

depicted in matrix format. Table 3 shows the dependency table for the example. Note,

for those dependent events that take place before the start or end of the parent event, a

negative offset value is used. Events 2.b, 3.a, 3.b, and 3.c are examples of events with

negative offsets.

Table 3. Table of Related Events

Event
ID Schedule Event Desc Duration

Relation
Type

Related
To Offset

Dependent
Events

1 1 Event 1.0 9 [2, 3, 4, 5]
2 1 Event 1.1 2 ES 1 0
3 1 Event 1.2 4 SS 1 4
4 1 Event 1.3 2 EE 1 1 [8]
5 2 Event 2.a 2 SS 1 1 [6, 7]
6 2 Event 2.b 2 SE 5 -1
7 2 Event 2.c 4 SE 5 2
8 3 Event 3.a 2 ES 4 -1 [9, 10]
9 3 Event 3.b 2 SS 8 -3

10 3 Event 3.c 2 SS 8 -2

D. ICALENDAR EXTENSIONS

A reexamination of Figure 22 with more specificity for the types of properties

needed to extend the capabilities advocated thus far is shown in Figure 26. The

properties for each object are listed in two parts. The first part lists the iCalendar

properties that are part of the existing specification that are essential and necessary for the

Schedule and Relational Event objects. The second listing is of properties that do not

exist in the current iCalendar specification, but are necessary to support the requirements

laid out in Chapter III. These properties begin with an “X-,” which is the iCalendar

format for nonstandard properties.

 48

Figure 26. Property Extensions for Schedule and Relational Event Objects

1. Schedule Properties

The CALENDAR object specified in [9] has very few properties available to it.

In fact, a property to give a calendar a name is nonstandard and must be specified with an

“X-.” Hence, we include X-NAME as a property that is necessary, especially since there

will potentially be multiple schedules branched from a single schedule. The Unique

Identifier (UID) in [9] is defined as a persistent globally unique identifier. Though a

mandatory property for EVENT, JOURNAL, FREE BUSY, and TO DO calendar

components, this is not a property belonging to the CALENDAR object. In order to tie a

schedule (establish a parent/child relationship) to another, a way to reference them to

each other with unique names is essential.

The X-TEMPLATE property is of type Boolean and indicates whether the

schedule is a template or not. This property must be consistent throughout the schedule

hierarchy. Template schedules must be recognized and treated differently than calendars

or active schedules because they do not contain any reference to real dates or times.

Thus, a calendar application that tried to apply a template to a real calendar would not

have any point to anchor from.

 49

Finally, the X-PARENT and X-CHILDREN properties are necessary to trace the

relationships between related schedules. A singular UID in the X-PARENT property

would be the parent schedule for that particular schedule. The parent schedule, in turn,

would have a list of UIDs in the X-CHILDREN property for those schedules that

belonged to the parent. There is no restriction to whether a schedule can have both X-

PARENT and X-CHILDREN values. In a three-tiered organizational tree, the middle-

tier organization would have both a parent and child(s).

2. Relational Event Properties

Similar to the X-PARENT and X-CHILDREN properties for a SCHEDULE

object, these properties in the Relational Event object contain the UID for those events

that have dependencies. An event that has many other events triggering off of it, will

have a list of their UIDs in the X-CHILDREN property list. Conversely, each of those

dependent events will have the key event’s UID in their X-PARENT property field. As

with schedules, there are no limitations to having values for both X-PARENT and X-

CHILDREN properties.

For those dependent events (with X-PARENT property), the type of temporal

relationship (discussed earlier in the chapter) must be specified in the X-TEMPORAL

CONSTRAINT property. The type values would be one of the following:

1) SS–the start of the dependent event depends on the start of the parent

event

2) SE–the start of the dependent event depends on the end of the parent event

3) EE–the end of the dependent event depends on the end of the parent event

4) ES–the end of the dependent event depends on the start of the parent event

In addition to specifying the X-TEMPORAL CONSTRAINT property for

dependent events, the X-OFFSET property must be specified to indicate the amount of

time separating the two dependent events given the temporal relationship. The type value

for this is Duration (not the same as the DURATION property). As specified in [9],

Duration values (prefaced with a P) are given in weeks (W), days (D), hours (H), minutes

 50

(M), and seconds (S), and can be either positive or negative. So for example, a negative

offset (duration) of 15 days, 5 hours, and 20 seconds would be: -P15DT5H0M20S.

 51

V. COMPARATIVE ANALYSIS

A. METHODOLOGY

To decide whether or not these new calendaring capabilities and extensions would

be beneficial and useful, we examine the efficiency and degree of error potential of each

method using a simplified fictional case study that should illustrate the reasons why these

capabilities would be useful and should give a determination of how useful they can be.

The selected use cases presented in Chapter III are used as the basis for action that

needs to be applied to the case study. The number of steps required performing the

action in the use case measures the systems efficiency. The number of potential errors

surrounding the update is used to measure the error rate.

This chapter material assumes a generic calendaring system with the capabilities

and features outlined in Chapter II, and assumes a future calendaring system with the

extended capabilities and features outlined in Chapter III.

B. CASE STUDY

The following example will give context to the use cases presented, and serve to

illustrate the deficiencies in today’s mainstream calendaring applications. Consider a

simple weeklong computer science conference that will be scheduled the first week of

August 2011. The NPS Computer Science (CS) Department Planning Committee (PC)

organizes the conference. They create and retain full authority for the master calendar

event, an event lasting from Monday thru Friday. Other calendars are also created for

each CS subdepartment: Artificial Intelligence (AI), Information Assurance (IA),

Network Engineering (NE), and Software Engineering (SE). Each subdepartment’s

calendar is used to schedule their respectively hosted events such as seminars, meetings,

and programming sessions. Master events, such as the kickoff meeting, guest speaker

lunches, and after hour social events are planned and scheduled by the PC on the master

calendar. The completed conference schedule is shown in Figure 27.

 52

Figure 27. CS Conference Calendar

For the purpose of the comparison, we assume the calendar structure shown in

Figure 27 has been already created: one conference calendar using existing tools and

methods, and another conference calendar using a calendar application with

enhancements described in Chapters III and IV. Although in some cases there may be

more than one way to model the conference (i.e., multiple calendars can be created and

shared by one individual or may be delegated separately for creation and sharing), only

the method described should be considered and used for the comparison.

The degree of complexity in which the conference can be modeled can also be a

point of debate. Since the conference is relatively simple and straightforward, a single

calendar (vice the five in this example) can be used to model the conference. We

purposely organize the conference into multiple calendars to mimic how larger and more

complex projects would most likely be organized. In this way, also, we are able to show

how the proposed tools simplify and aid in efficiency of certain actions, as well as better

maintain the cohesiveness of the entire calendar structure.

The summary of the structure in terms of the calendar, schedule, events, and their

relationships are described below.

 53

1. Calendar Structure–Current Calendaring Capability

The following description of the methods and resulting calendar structure is used

to describe the CS Conference (as it appears in Figure 27) using a mainstream

calendaring system with features and functionality outlined in Chapter II. This

description is the baseline of the calendar prior to any changes suggested further in the

later part of the comparison.

a. Calendars

A total of five separate calendars would exist for each of the respective

computer science departments: PC, AI, IA, NE, and SE. For simplicity’s sake, it is

assumed that one person from the PC creates, names, sets permissions, and shares each of

the five calendars. From the system point of view, each of these calendars has no relation

between one another. They have a peer relationship within the calendar application. As

a consequence, in order for other users to see the conference (when shared to them), all

five calendars need to be added to that user’s calendar program.

b. Events

A total of 14 events are shown in Figure 27. Each event exists in one of

the five calendars as outlined in the legend of Figure 27. There are no peer-to-peer

relationships between any of the events. The only relationship that exists with an event is

that of its parent container (calendar). Table 4 shows the conceptual organization and

relationship (or lack thereof) of the differing conference events.

 54

Table 4. Table of Conference Events and their Relationships (Current Calendaring)

Event Event Number Calendar Contained In Relationships

NPS CS Conference 1 Planning Committee (PC) None
Conf Social 2 Planning Committee (PC) None
Conf Dinner 3 Planning Committee (PC) None
AI, Mtg 1 4 Artificial Intelligence (AI) None
AI, Mtg 2 5 Artificial Intelligence (AI) None
AI, Mtg 3 6 Artificial Intelligence (AI) None
SE, Mtg 1 7 Software Engineering (SE) None
SE, Mtg 2 8 Software Engineering (SE) None
SE, Mtg 3 9 Software Engineering (SE) None
NE, Mtg 1 10 Network Engineering (NE) None
NE, Mtg 2.a 11 Network Engineering (NE) None
NE, Mtg 2.b 12 Network Engineering (NE) None
IA, Mtg 1 13 Information Assurance (IA) None
IA, Mtg 2 14 Information Assurance (IA) None

2. Calendar Structure–Future Calendaring Capability

Using the ideas presented in Chapters III and IV, the following methods and

structure would be used to model the CS conference schedule in Figure 27, incorporating

hierarchical schedules and temporally related events.

a. Calendars (Schedules)

Five schedules would be created for each of the respective computer

science departments: PC, AI, IA, NE, and SE. However, in this case, the structure and

relation of these schedules differ from the flat structure of the calendars using today’s

calendaring methods. Each of the subdepartments schedules is created subordinate to the

PC schedule. Again, we assume one person from the PC creates, names, and sets

permissions for each of the five schedules. Now, because of conference schedule’s

hierarchical structure, however, the creator needs only to publish the PC calendar. Users

who have the conference schedule shared to them need only subscribe to this single

schedule. The subordinate schedule structure will also be part of the top-level schedule.

 55

b. Events

Table 5 shows the same 14 events as in Table 4. The difference, however,

is that each of the events has a Start to Start (SS) relationship with Event 1 (except Event

1 itself). We do not describe the exact details of these relationships. Each relationship

would contain an offset from Event 1. For example, the event AI Mtg 1 would likely

have a 0-hour offset since it is the first event of the conference. Event AI Mtg 2 on the

other hand would likely have a 48-hour offset. These relationship details are not relevant

to the comparison, so we omit them.

Table 5. Table of Conference Events and their Relationships (Future Calendaring)

Event Event Number Schedule Contained In Relationships

NPS CS Conference 1 Planning Committee (PC) None
Conf Social 2 Planning Committee (PC) SS ‐ Event 1
Conf Dinner 3 Planning Committee (PC) SS ‐ Event 1
AI, Mtg 1 4 Artificial Intelligence (AI) SS ‐ Event 1
AI, Mtg 2 5 Artificial Intelligence (AI) SS ‐ Event 1
AI, Mtg 3 6 Artificial Intelligence (AI) SS ‐ Event 1
SE, Mtg 1 7 Software Engineering (SE) SS ‐ Event 1
SE, Mtg 2 8 Software Engineering (SE) SS ‐ Event 1
SE, Mtg 3 9 Software Engineering (SE) SS ‐ Event 1
NE, Mtg 1 10 Network Engineering (NE) SS ‐ Event 1
NE, Mtg 2.a 11 Network Engineering (NE) SS ‐ Event 1
NE, Mtg 2.b 12 Network Engineering (NE) SS ‐ Event 1
IA, Mtg 1 13 Information Assurance (IA) SS ‐ Event 1
IA, Mtg 2 14 Information Assurance (IA) SS ‐ Event 1

We now present two use cases to provide the essence of how the proposed system

will differ from existing calendaring systems. They will also demonstrate the

applicability and usefulness of these new capabilities in organizational planning and

project management.

 56

C. APPLIED USE CASES

1. Project Timeline Shift (UC1.5)

For UC 1.5, the conference is delayed or moved ahead due to some circumstance

and consequently the conference schedule needs to be adjusted in the calendar

application. For this particular scenario, we choose to delay the conference by two

months, starting 03 October 2011. The internal structure of the conference remains the

same. Only the conference window changes, shifting from 1–5 August 2011 to

3–7 October 2011. We choose this two-month delay to better illustrate the difficulty

when moving events between months. Moving events within a month, week, or day is far

more trivial and less beneficial as a comparative scenario.

a. Current Calendaring Method

Doing so with today’s calendaring would require each event to be

manipulated to reflect the new dates (the time properties would not need to be changed if

the original structure is preserved). Some calendars have the flexibility to drag-and-drop

events on the calendar slate to effect the change. The schedule change, using the drag-

and-drop method, can only be implemented within the scope of the current view,

however. If examining an event within the daily view of the calendar, the drag-and-drop

would change the time of the event. Similarly, if dragging-and-dropping the event within

the monthly view, the change would affect the date property. Drag-and-drop across

months is not possible or necessarily desirable. Cut-and-paste methods are also a

possibility; however, this method can result in extensive navigation (e.g., moving a group

of events ahead 3 months would require multiple trips back and forth between the

differing months for each cut-and-paste) to affect schedule changes.

Both of the previous two methods discussed are not desirable under the

current scenario. In addition, there is no feature implemented in current calendaring tools

that allow for selection of multiple events, with subsequent drag-and-drop capability.

Instead, the method used to implement this scenario is the direct manipulation of each

individual event’s start and end properties.

 57

To effect the change to the conference schedule using this method, we

must edit the properties of each event in the conference schedule. We do this using a

double-click for each event. Subsequently, we make adjustments to the start and end

properties for each event, followed by a “save” or “done” click to complete the change

for the event. Since there are 14 total events, using this method we would need to make

14 double-clicks, and the same number of start and end adjustments, as well as the same

number of “save” or “done” clicks. In total, (14 x 4) = 56 actions are required to make

this change to the conference schedule using the technique just described. The summary

of results is listed in Table 6.

While this method is not too difficult if the number of events is few, it

could be a monumental and error-prone task if the number of events is large. With each

event manipulation, there exist two possible chances to readjust the new start and end

properties incorrectly. In a sea of events, these potential mistakes in start and end

properties might not be easily detected once they are made. Errors to the date

adjustments are much more likely in scenarios where the offset from the base event varies

considerably. For this example, since the conference is only five days long, the

determination of the adjusted start and end dates is relatively easy. For project schedules

that span weeks or months, or where the project may be delayed by hours instead of days,

the determination of adjusted start and end dates will be much more difficult.

b. Future Calendaring Method

With the conference schedule built using temporally related events (Table

5), the two-month delay can be accomplished in a small fraction of steps compared to

what is required using the methodology described previously. Essentially, what would be

needed from the user perspective is the adjustment to the base event (Event 1 – NPS CS

Conference). The action would require a double-click, followed by the adjustment to

start and end properties for this event, concluded with a “save” or “done” click.

Once completed, there may possibly be a system response and required

user feedback such as “Do you want to adjust all related events (Yes/No)?” If yes is

selected, the system would automatically update the subordinate events based on the new

 58

base event properties and the relationship specified. Note any subordinate relations

would also be automatically adjusted if they existed. If no is selected, the system would

likely be designed to adjust the offset property for each relation specified in Table 5.

Table 6. UC 1.5 – Project Timeline Shift Comparative Effort

Method

Number of

Double‐
Clicks

Start
Property
Changes

End
Property
Changes

"Save"
Clicks

Total
Actions

Current 14 14 14 14 56

Future 1 1 1 1 4

c. Comparison of Results

Table 6 shows the comparison between the two methods for shifting the

timeline discussed previously. In general, the increased difficulty to perform such a

project schedule adjustment is proportional to the number of events that are part of the

overall schedule. In this particular case, there are 14 events. It can be seen that it is 14

times the effort to make the shift in the conference schedule with today’s calendaring

tools compared to the project schedule built with event-to-event temporal relationships.

The area of most concern, however, is the proportional amount of

additional effort required to change the start and end properties using current tools and

the methodology presented. This example shows that there is a proportionally increased

opportunity to make errors for the start and end properties using current methods

compared to the future calendaring capability method. The number of date changes

required for the future calendaring method is two, whereas the number of date changes

required using current tools is 28. There is a 14-fold increase in the inadvertent entry of a

wrong date with today’s calendaring tools.

 59

2. Reuse Archived or Existing Schedule (UC3.6)

In this scenario, the annual conference is being planned, but this time it is for the

following year, 2012. It is assumed that conference schedule generally worked fine the

past year and can be used as a template for the current year. The conference schedule in

Figure 27 exists on paper but has not yet been entered into the calendar application for

August 2012. The end result should appear like the calendar shown in Figure 28. We

follow the same method and assumptions outlined in the previous use case, and provide

an abbreviated discussion for this use case.

Figure 28. CS Conference Calendar (2012)

a. Current Calendaring Method

The method for creating the conference schedule depicted in Figure 28

requires the creation of the five calendars (PC, SE, NE, AI, and IA). Next, each of the

14 events will need to be created from scratch. Each created event will have to have the

event name, calendar it belongs to, start, and end time specified at minimum.

 60

b. Future Calendaring Method

Once again, the conference has previously been created using temporal

events. The conference can be reused in one of two ways. First, the previous year’s

conference calendar may exist in the calendar. This calendar can be reused following the

same method described previously for the Project Timeline Shift (UC 1.5) use case.

Alternatively, the conference calendar can be “imported” from a previously saved .ics

file. We use the latter case for comparison.

Table 7. UC 3.6 – Reuse Archived or Existing Schedule Effort

Method

Number of

Double
‐Clicks

Descriptio
n Changes

Parent
Calendar
Id

Start
Property
Changes

End
Property
Changes

"Save"
Clicks

Total
Actions

Current 14 14 14 14 14 14 84

Future 1 1 0 1 1 1 5

c. Comparison of Results

Table 7 shows the disparity between the two methods. The current

method requires everything to be redone from scratch. Although it is possible the 2011

conference schedule exists in the calendar database, it is as likely to exist in another form

or format other than in the calendar application. A printed copy, or one belonging as part

of an electronic document (i.e., slide show presentation) is likely to be a source of the

previous year’s conference information. Therefore, it is likely that the conference

schedule will need to be put back into the calendar entirely from scratch.

The future method requires a magnitude less in terms of effort. Although

the additional work of finding the .ics file in a file directory is required (and not captured

in the table), this omission does not detract from the disparity between the two methods.

 61

VI. CONCLUSION

A. SUMMARY OF WORK

This thesis examined the current state of computer calendaring with respect to

modeling series event scheduling and hierarchical schedules. With the exception of

project management software, we showed that calendaring software does not have the

capability to adequately model complicated organizational schedules. We argued that

most users, who want this type of project management scheduling capability, but not the

investment in buying and using it, are forced to use other tools (i.e., tabular tools such as

Excel) because calendaring tools are too limited.

As a result, we provided a description of a system that would meet these needs.

We described the stakeholders who would use and benefit from such a system, described

the actors that would interact with it, and provided its main features and nonfunctional

requirements. We also presented a variety of use cases to describe how these features

would be used and the actions the user may take as part of the given use case.

We then provided a framework for design of such a system. We did so by first

analyzing and describing the essential details of the temporal relation concepts that would

be needed. A domain model for current calendar users was described and contrasted

against that of organizational calendar users. Also, the current calendaring conceptual

data model was presented and contrasted against a data model that would support the

proposed calendaring capabilities. A set of extensions to the iCalendar data format was

outlined to demonstrate the relative feasibility of such a calendaring system.

Two use cases were examined to highlight the benefits of these proposed

calendaring capabilities. In each case, the potential savings of human processing effort

and reduction in data-entry errors are considerable. It is realized that the comparative

analysis does not factor in total effort. Certainly, it requires work to create the temporally

related events in the future calendaring system. However, once that work is complete,

the benefits shown for the two highlighted use cases speak for themselves.

 62

B. RECOMMENDATIONS FOR FUTURE WORK

The following are ideas where future work can be done.

1. Prototype

Implementation of hierarchical schedules and temporally related events in a

calendar application will be no trivial task. A database will be required to track the

events, their schedule, and their relations. Graphical properties and Human Computer

Interaction (HCI) will also need to be thought out carefully. These types of event

relations are not trivial to think of and implement in themselves. Any additional

complexity or clutter added by the application will certainly doom its use. Such a system

will, however, help tighten the specifications and extensions proposed.

2. XML Schema

The iCalendar specification will likely succumb to its XML counterpart XCal.

XCal will likely be the future for calendar data exchange and interoperability. This work

only proposes extensions to the iCalendar data model. These extensions, and their refined

definition, will need to be stated in XML terms. Ultimately, however, if proved

adoptable and desirable, these extensions will need to be part of the specification itself so

that these scheduling relationships are portable across products and systems.

The nature of XML will also potentially allow these scheduling relationships to

interact “smartly” with other scheduling properties. One such area of research and

development is in optimization scheduling. Whereas the temporal properties addressed in

this work are specified (i.e., the calendar system needs to be able to determine or is

provided with fixed start and end times), other optimization scheduling systems may be

able to parse and compute optimized event schedules based on a no-earlier-than or no-

later-than relationship.

 63

APPENDIX. LIST OF USE CASES

A. UC 1.1–CREATE RELATIONAL EVENT

Use Case Section Comment

Number 1.1
Name Create Relational Event
Scope Calendar Application
Level User Goal
Primary Actor User
Preconditions Parent Event exists.
Success Guarantee New Event is created and visible. Relationship between New (child) Event

and Parent Event is established and visible (‘show relationships’ == on).
Main Success Scenarios 1. User creates a new event in whatever manner offered by the application

(i.e., double click on day/time, file menu selection, shortcut key, etc.).
2. Required information filled out (i.e., name)
3. In lieu of specifying the start/end (from/to) properties, user selects the
button called ‘has relation’ or ‘is related to’.
4. A list of events (relatable to the present calendar selected) is displayed
(either the main calendar window itself or an agenda-style list). The user
selects the Parent Event from the list. If this temporal relation is the Parent
Event’s first, then the Parent Event must be flagged as a ‘parent’.
5. The user selects the child-parent relationship (SS, SE, ES, or EE).
6. User specifies the offset (interval of time) from the parent event.
7. User specifies the duration of the New Event, or (alternatively) the user
specifies the start (if relationship is tied to the new event’s end time) or end
(if relationship is tied to new event’s start time). In the later case, the
duration can be calculated and set based on the information given.
8. User is presented with a default schedule however user can choose other
available schedule. Note however only the events within a hierarchy can be
related.
9. User presses the ‘Done’ button and the New Event is shown on the
calendar along with the relationship to the Parent Event (if ‘show
relationships’ toggled on).

Extensions *a. At any time prior to the user selecting ‘Done’, the ‘Cancel’ button is
selected and all information pertaining to the new event will be discarded.
*b. If system fails prior to the user selecting ‘Done’, all information will be
lost.

 64

B. UC 1.2–MODIFY STATIC EVENT TO RELATIONAL EVENT

Use Case Section Comment

Number 1.2
Name Modify Static Relational Event
Scope Calendar Application
Level User Goal
Primary Actor User
Preconditions Event to be modified exists and does not have a relation. Parent Event exists.
Success Guarantee Relationship between Modified Event and Parent Event is established and

visible (‘show relationships’ == on).
Main Success Scenarios 1. User selects desired event to be modified and selects ‘edit’.

2. User selects the button called ‘has relation’ or ‘is related to’.
3. Start and End properties are no longer editable (greyed out).
4. A list of events (relatable to the present calendar selected) is displayed
(either the main calendar window itself or an agenda-style list). The user
selects the parent event from the list. If this temporal relation is the parent
event’s first, then the parent event must be flagged as a ‘parent’.
5. The user selects the child-parent relationship (SS, SE, ES, or EE).
6. User specifies the offset (interval of time) from the parent event.
7. User specifies the duration of the new event, or (alternatively) the user
specifies the start (if relationship is tied to the new event’s end time) or end
(if relationship is tied to new event’s start time). In the later case, the
duration can be calculated and set based on the information given.
8. If user changes the schedule (calendar) that the event belongs to, then the
allowable schedules to be chosen have to be in the hierarchy of the original
schedule.
9. User presses the ‘Done’ button and the New event is shown on the
calendar along with the relationship to the Parent Event (if ‘show
relationships’ toggled on).

Extensions *a. At any time prior to the user selecting ‘Done’, the ‘Cancel’ button is
selected and all information pertaining to the new event will be discarded.
*b. If system fails prior to the user selecting ‘Done’, all information will be
lost.

 65

C. UC 1.3–MODIFY RELATIONAL EVENT TO STATIC EVENT

Use Case Section Comment

Number 1.3
Name Modify Relational Event to Static Event
Scope Calendar Application
Level User Goal
Primary Actor User
Preconditions Event to be modified exists and has a relation to its parent.
Success Guarantee Relationship between modified event and parent event is dis-established.

Event becomes static and any pointers from parent to child or child to parent
are removed.

Main Success Scenarios Three potential scenarios lead to this use case:

1. User selects desired event to be modified and selects ‘edit’.
 1.1. User selects the ‘remove relation’ button.
 1.2. Start and End properties are set according to the previous relation to
the parent event.
 1.3. Modified Event is converted to a Static Event.
 1.4. Pointers from the Parent Event to the Modified Event are removed. If
no other child relationship for parent exists, Parent Event becomes Static
Event as well.
 1.5. User makes other modifications as necessary to the Modified Event.
 1.6. If user changes the schedule (calendar) that the event belongs to, then
any schedule within the calendar application can be chosen.
 1.7. User presses the ‘Done’ button and the Modified Event is shown on
the calendar.

2. User selects the visible relation between Child and Parent Events and
subsequently ‘deletes’ the relationship. User is prompted to confirm delete
operation. Steps 1.2 – 1.4 from above will be accomplished.

3. The Parent Event is deleted (see UC1.7).

Extensions *a. At any time prior to the user selecting ‘Done’, the ‘Cancel’ button is
selected and all information pertaining to the new event will be discarded.
*b. If system fails prior to the user selecting ‘Done’, all information will be
lost.

 66

D. UC 1.4–MODIFY TEMPORAL RELATIONSHIP BETWEEN
PARENT/CHILD EVENTS

Use Case Section Comment

Number 1.4
Name Modify Temporal Relationship Between Parent/Child Events
Scope Calendar Application
Level User Goal
Primary Actor User
Preconditions Both Parent, Child, and the temporal relation between the two exist.
Success Guarantee Modified Event is updated with new relationship type or offset (i.e., SS

changed to SE and offset changed from 1 hr to 2 hr).
Main Success Scenarios There are two main scenarios in which this can occur:

1. User selects desired event to be modified and selects ‘edit’.
 1.1. User may elect to do one or both of the following:
 a. User modifies the offset (i.e., 1 day:1 hour changed to 2 days: 2
hours).
 b. User changes child-parent relationship (i.e., SS changed to SE).
 1.2. User makes any other modification to event if needed.
 1.3. User presses the ‘Done’ button.
 1.4. System saves new offset and/or child-parent relationship with the
Child Event.
 1.5. System displays calendar with Child and Parent Events showing their
new relationship (if ‘show relationships’ toggled on).

2. User graphically changes the offset and or parent/child relationship.
 2.1. User may elect to do one or both of the following:
 a. User drags Child Event to the desired time location in the Calendar.
System will prompt user to confirm the new offset.
 b. User clicks on ends of relationship arrow (on the visible link
between Parent/Child Events) and reassigns them as necessary to the Start or
End of either the Parent or Child Events.
2.2. Items 1.4 and 1.5 above are executed by the System.

Extensions *a. At any time prior to the user selecting ‘Done’, the ‘Cancel’ button is
selected and all information pertaining to the new event will be discarded.
*b. If system fails prior to the user selecting ‘Done’, all information will be
lost.

 67

E. UC 1.5–MODIFY PARENT TEMPORAL PROPERTIES (MOVE
TIMELINE)

Use Case Section Comment

Number 1.5
Name Modify Parent Temporal Properties (Move Timeline)
Scope Calendar Application
Level User Goal
Primary Actor User
Preconditions Parent and Children Events exist.
Success Guarantee The Start or End properties of a Parent Event are modified. All children

with temporal relations to the changed properties are readjusted on the
calendar.

Main Success Scenarios There are two main scenarios in which this can occur:

1. User selects desired Parent Event to be modified and selects ‘edit’.
 1.1. User modifies the Start and/or End Property with a new date/time.
 1.2. User presses the ‘Done’ button.
 1.3. System saves new information for Parent Event and calls for a
redisplay of the calendar.
 1.4. System calendar shows the adjusted Parent Event and displays the
shifted Children Events (Note, the child properties do not change).

2. User graphically changes the Parent Event either by clicking and
dragging the Event to a new date/time, or by ‘grabbing’ the Start or End
edges of the Parent Event and expanding or shrinking the event accordingly.
 2.1 Actions 1.3 and 1.4 from above are executed and calendar is re-
displayed with the shift in schedule.

Extensions *a. At any time prior to the user selecting ‘Done’, the ‘Cancel’ button is
selected and all information pertaining to the new event will be discarded.
*b. If system fails prior to the user selecting ‘Done’, all information will be
lost.

 68

F. UC 1.6–DELETE TEMPORAL EVENT (CHILD)

Use Case Section Comment

Number 1.6
Name Delete Temporal Event (Child)
Scope Calendar Application
Level User Goal
Primary Actor User
Preconditions A Child Event exists with a temporal relation to its Parent Event. In this

case, the Child Event does not have any children of its own.
Success Guarantee The Child Event is deleted. Any reference to the deleted event on the parent

side is removed as well.
Main Success Scenarios 1. User selects desired Child Event and selects ‘delete’.

2. System prompts user for confirmation.
3. User confirms deletion.
4. System removes any pointers on Parent Side.
5. System removes Child Event from storage.
6. System calls for a redisplay.

Extensions *a. At any time prior to the user selecting ‘Done’, the ‘Cancel’ button is
selected and all information pertaining to the new event will be discarded.
*b. If system fails prior to the user selecting ‘Done’, all information will be
lost.

 69

G. UC 1.7–DELETE TEMPORAL EVENT (PARENT)

Use Case Section Comment

Number 1.7
Name Delete Temporal Event (Parent)
Scope Calendar Application
Level User Goal
Primary Actor User
Preconditions A Parent Event exists with its children.
Success Guarantee The Parent Event is deleted. All children of the parent are converted to static

events by default. User can elect to delete all related events. If so children
are deleted from the data store. Pointers to the Parent Event from another
parent are also removed.

Main Success Scenarios 1. User selects desired Parent Event and selects ‘delete’.
2. System prompts user for confirmation.
3. User confirms deletion.
4. System prompts user if user wishes to delete all subordinate children:

 4.a. User chooses not to delete all children (default).
 4.a.1. If deleted event has parent, system removes pointer from parent.
 4.a.2. For each pointer to a child event, System converts the child event
to a static event.
 4.a.3. Event in question is deleted from data store.
 4.a.4. System calls for a calendar redisplay.

 4.b. User chooses to delete all children
 4.b.1. Item 4.a.1 is performed.
 4.b.2. Each child event of the event in question is deleted. Before
deletion though, if this child event has children of its own, the process of 4.b
is performed on the child event.
 4.b.3. Items 4.a.3 and 4.a.4 are performed.

Extensions *a. At any time prior to the user selecting ‘Done’, the ‘Cancel’ button is
selected and all information pertaining to the new event will be discarded.
*b. If system fails prior to the user selecting ‘Done’, all information will be
lost.

 70

H. UC 2.1–TOGGLE SELECTION OF VISUAL RELATIONSHIPS

Use Case Section Comment

Number 2.1
Name Toggle Selection of Visual Relationships
Scope Calendar Application
Level User Goal
Primary Actor User
Preconditions None
Success Guarantee The visual representation of the temporal relationships between events are

either shown or not shown depending on whether or not the visual
representation feature is turned on or off respectively.

Main Success Scenarios 1. User selects on / off of visual representation icon, shortcut, or menu item.
2. If the user selects on:
 2.a. System calls for a calendar redisplay with visual relationships shown
(if any).
3. If the user selects off:
 3.a. System calls for a calendar redisplay with visual relationships not
shown.

Extensions None

 71

I. UC 2.2–GANTT CHART REPRESENTATION OF PROJECT

Use Case Section Comment

Number 2.2
Name Gantt Chart Representation of Project
Scope Calendar Application
Level User Goal
Primary Actor User
Preconditions At least one calendar (schedule) is selected
Success Guarantee The selected calendars (schedules) to be viewed are displayed in a Gantt

chart form.
Main Success Scenarios 1. User selects Gantt chart view.

2. System provides Gantt chart view of selected calendars (schedules).
3. A vertical scroll bar is necessary if too many calendars (schedules) are
selected for view. The scroll bar will allow user to scroll vertically through
all the different calendars (schedules).
4. A horizontal scroll bar will be displayed if project window does not fit on
the screen. Scrolling right will show future events. Scrolling left will show
past events.

Extensions *a. At any time prior to the user selecting ‘Done’, the ‘Cancel’ button is
selected and all information pertaining to the new event will be discarded.
*b. If system fails prior to the user selecting ‘Done’, all information will be
lost.

 72

J. UC 2.3–MATRIX VIEW OF PROJECT

Use Case Section Comment

Number 2.3
Name Matrix View of Project
Scope Calendar Application
Level User Goal
Primary Actor User
Preconditions A schedule is available to be shown in the matrix view.
Success Guarantee The schedule is displayed in a tabular (matrix) form on the main display of

the calendaring tool.
Main Success Scenarios 1. User selects schedule to be displayed (most likely through right click of

the schedule).
2. User selects matrix view.
3. System places matrix view of schedule in the main window.
4. System places items in chronological order row by row.
5. System provides vertical scroll bar if the number of rows (events) exceeds
the screen display.
6. System provides horizontal scroll bar if the number of event properties
needing display exceeds the screen display.

Extensions *a. At any time prior to the user selecting ‘Done’, the ‘Cancel’ button is
selected and all information pertaining to the new event will be discarded.
*b. If system fails prior to the user selecting ‘Done’, all information will be
lost.

 73

K. UC 2.4–SELECTIVE VIEWING OF SCHEDULES IN HIERARCHY

Use Case Section Comment

Number 2.4
Name Selective Viewing of Schedules in Hierarchy
Scope Calendar Application
Level User Goal
Primary Actor User
Preconditions At least one calendar (schedule) is available for display.
Success Guarantee The appropriate calendars (schedules) are displayed on the calendar based on

user desires.
Main Success Scenarios 1. User deselects calendar (schedule) in the pane showing all available

calendars and schedules.
2. If a schedule is deselected, all subordinate schedules are also deselected.
3. If a schedule is re-selected, it and all its subordinate schedules are
displayed.
4. System commands redisplay of selected or deselected calendars to main
calendar view.

Extensions *a. At any time prior to the user selecting ‘Done’, the ‘Cancel’ button is
selected and all information pertaining to the new event will be discarded.
*b. If system fails prior to the user selecting ‘Done’, all information will be
lost.

 74

L. UC 3.1–CREATE NEW CHILD SCHEDULE

Use Case Section Comment

Number 3.1
Name Create New Child Schedule
Scope Calendar Application
Level User Goal
Primary Actor User
Preconditions At least one schedule is available for display.
Success Guarantee The new schedule is created and placed underneath selected schedule.
Main Success Scenarios 1. User selects schedule (most likely through right click on the schedule) in

calendar display pane.
2. User selects “create new schedule” from pop-up menu.
3. System creates new schedule subordinate to the selected schedule.
System assigns unique color to new schedule.
4. User provides name for new schedule.

 *a. At any time prior to the user selecting ‘Done’, the ‘Cancel’ button is
selected and all information pertaining to the new event will be discarded.
*b. If system fails prior to the user selecting ‘Done’, all information will be
lost.

 75

M. UC 3.2–MOVE SCHEDULE WITHIN THE HIERARCHY

Use Case Section Comment

Number 3.2
Name Move Schedule Within the Hierarchy
Scope Calendar Application
Level User Goal
Primary Actor User
Preconditions A multiple schedules exist within a single schedule. At least two levels of

hierarchy exist within the schedule.
Success Guarantee The appropriate schedule is relocated to a new parent. Any subordinate

schedules are also moved.
Main Success Scenarios 1. User selects schedule (2nd level calendar or lower) in calendar display

pane.
2. User drags selected schedule and moves it to new parent within existing
hierarchy.
3. System makes appropriate changes to relationship table and the data
store.
4. System provides appropriate schedule structure changes in the calendar
display pane.

Extensions *a. At any time prior to the user selecting ‘Done’, the ‘Cancel’ button is
selected and all information pertaining to the new event will be discarded.
*b. If system fails prior to the user selecting ‘Done’, all information will be
lost.

 76

N. UC 3.3–FREEZE SCHEDULE

Use Case Section Comment

Number 3.3
Name Freeze Schedule
Scope Calendar Application
Level User Goal
Primary Actor User
Preconditions A schedule exists in the calendar application.
Success Guarantee Users are prevented from making additions, deletions, or changes to the

schedule during the freeze.
Main Success Scenarios 1. User (owner) selects schedule and freezes schedule.

2. System updates schedule properties to reflect freeze. Subordinate
schedules are also frozen.
3. System provides visual notification to users that schedule is frozen.
4. System prevents other calendar users from making changes to schedule.
5. Freeze is released when user (owner) releases freeze.

Extensions *a. At any time prior to the user selecting ‘Done’, the ‘Cancel’ button is
selected and all information pertaining to the new event will be discarded.
*b. If system fails prior to the user selecting ‘Done’, all information will be
lost.

 77

O. UC 3.4–DELETE SCHEDULE (PROJECT CANCELLATION)

Use Case Section Comment

Number 3.4
Name Delete Schedule (Project Cancellation)
Scope Calendar Application
Level User Goal
Primary Actor User
Preconditions Schedule to be deleted exists in calendar application.
Success Guarantee The schedule, its subordinate schedules, and all associated events are

removed from display and calendar data store.
Main Success Scenarios 1. User selects schedule to be deleted and deletes schedule.

2. System prompts user if they are sure of deletion. If sure:
3. System removes the schedule, subordinate schedules, and associated
events from the display.
4. System removes the schedule, subordinate schedules, and associated
events from the data store.

Extensions *a. At any time prior to the user selecting ‘Done’, the ‘Cancel’ button is
selected and all information pertaining to the new event will be discarded.
*b. If system fails prior to the user selecting ‘Done’, all information will be
lost.

 78

P. UC 3.5–SAVE SCHEDULE (PROJECT ARCHIVAL)

Use Case Section Comment

Number 3.5
Name Save Schedule (Project Archival)
Scope Calendar Application
Level User Goal
Primary Actor User
Preconditions A schedule exists in the calendar application.
Success Guarantee The schedule to be saved, its subordinate schedules, and all associated events

are “exported” and saved to a file.
Main Success Scenarios 1. User selects the schedule to be saved and selects export.

2. The system prompts the user with a file system menu and prompts user to
name the file to be saved and its location.
3. Users provides information.
4. System produces exported file (in accordance with RFC 5545 and
extensions proposed in Chapter IV) and saves file to location.

Extensions *a. At any time prior to the user selecting ‘Done’, the ‘Cancel’ button is
selected and all information pertaining to the new event will be discarded.
*b. If system fails prior to the user selecting ‘Done’, all information will be
lost.

 79

Q. UC 3.6–REUSE ARCHIVED OR EXISTING SCHEDULE

Use Case Section Comment

Number 3.6
Name Reuse Archived or Existing Schedule
Scope Calendar Application
Level User Goal
Primary Actor User
Preconditions Either the schedule to be duplicated exists in the calendar data store or it

exists as a file (see UC 3.5).
Success Guarantee The reused calendar is given a new name and exists in the calendar data store

likely with new base date.
Main Success Scenarios There are two main scenarios in which this can occur:

1. User selects schedule to be reused from the calendar view pane.
 1.1. User selects ‘copy’
 1.2. User selects ‘paste’ in the appropriate location in the appropriate
location in the calendar view pane.
 1.3. System provides new / unique color scheme.
 1.4. User provides unique name for schedule.
 1.5. System displays schedule information on the calendar.
 1.6. User makes changes to base event dates to reflect new project
window.

2. User selects import from the menu bar.
 2.1. System provides file system menu.
 2.2. User selects appropriate file to be imported.
 2.3. System imports schedule to the data store and displays schedule
information on the calendar.
 2.4. User makes changes to base event dates to reflect new project
window.

Extensions *a. At any time prior to the user selecting ‘Done’, the ‘Cancel’ button is
selected and all information pertaining to the new event will be discarded.
*b. If system fails prior to the user selecting ‘Done’, all information will be
lost.

 80

R. UC 3.7–PUBLISH (SHARE) / SUBSCRIBE SCHEDULE

Use Case Section Comment

Number 3.7
Name Publish (Share) / Subscribe Schedule
Scope Calendar Application
Level User Goal
Primary Actor User
Preconditions At least one schedule is available to share / subscribe to. Schedule has be

located on central data store and not on a singular computer.
Success Guarantee The schedule is made available to other users. Users are able to bring

schedule into their calendar application for display.
Main Success Scenarios 1. User (sharer) selects schedule to be shared.

2. User (sharer) sets appropriate share properties and grants user access.
3. System makes appropriate updates to the data store.
4. User subscribes to schedule made available to them.
5. System provides authentication.
6. System transfers schedule data to the subscriber’s calendar application.
7. Subscriber’s calendar application displays subscribed schedule in
calendar.

Extensions *a. At any time prior to the user selecting ‘Done’, the ‘Cancel’ button is
selected and all information pertaining to the new event will be discarded.
*b. If system fails prior to the user selecting ‘Done’, all information will be
lost.

 81

LIST OF REFERENCES

 [1] R. Pagan, “POA&M 2005 BRAC Corrections Implementation Plan,” HQMC
Plans Policy and Operations, Security Division, unpublished, Jul 2010.

[2] 3rd Marine Aircraft Wing, “Operational Deployment Milestones,” USMC,
unpublished, May 2005.

[3] M. A. Trabun, “U.S. Marine Corps Training Modeling and Simulation Master
Plan,” USMC Training and Education Command, Technology Division, File 18
Jan 2007.

[4] K. R. Baker and D. Trietsch, Principles of Sequencing and Scheduling. Hoboken,
NJ: Wiley & Sons, 2009.

[5] J. P. Lewis, Fundamentals of Project Management, 3rd ed. New York, NY:
Amacom Books, 2007.

[6] H. Kerzner, Project Management, A Systems Approach to Planning, Scheduling,
and Controlling, 10th ed. Hoboken, NJ: Wiley & Sons, 2009.

[7] WPF calendar schedule control, DevComponents™ [Online]. Available
http://www.devcomponents.com/dotnetbar-wpf/WPFScheduleControl.aspx.

[8] Module 3: Calendar > Chapter 4: Create and view calendars, GoogleApps™
[Online]. Available http://edutraining.googleapps.com/Training-Home/module-3-
calendar/chapter-4/2-7.

[9] B. Desruisseaux, Internet Calendaring and Scheduling Core Object Specification
(iCalendar), IETF RFC 5545, September 2009; [Online]. Available
http://tools.ietf.org/html/rfc5545.

[10] C. Daboo, iCalendar Transport-Independent Interoperability Protocol (iTIP),
IETF RFC 5546, December 2009 [Online]. Available
http://tools.ietf.org/html/rfc5546.

[11] A. Melnikov, iCalendar Message-Based Interoperability Protocol (iMIP), IETF
RFC 6047, December 2010; http://tools.ietf.org/html/rfc6047.

[12] C. Daboo, xCal: The XML Format for iCalendar, IETF RFC 6321, 2011.

[13] An introduction to Internet Calendaring and Scheduling, CalConnect [Online].
Available http://www.calconnect.org/CD1012_Intro_Calendaring_V1.1.shtml.

 82

[14] T. Considine, WS-Calendar Version 1.0, OASIS Committee Specification 01, 30
July 2011 [Online]. Available: http://docs.oasis-open.org/ws-calendar/ws-
calendar/v1.0/ws-calendar-1.0-spec.html.

 [15] Use cases and requirements, CalConnect [Online]. Available
http://www.calconnect.org/usecases.shtml.

[16] C. Larman, Applying UML and Patterns, 2nd ed. Upper Saddle River, NJ:
Prentice Hall Professional, 2002.

[17] PMO and project management dictionary, PM Hut [Online]. Available
http://www.pmhut.com/pmo-and-project-management-dictionary.

[18] Planning and resource management, Penn State University [Online]. Available:
https://courses.worldcampus.psu.edu/welcome/pmangt/samplecontent/520lesson0
8/lesson08_02.html.

[19] K. Neumann et al., Project Scheduling with Time Windows and Scarce Resources.
Berlin, Heidelberg: Springer-Verlag, 2002.

 83

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Marine Corps Representative
 Naval Postgraduate School
 Monterey, California

4. Director, Training and Education, MCCDC, Code C46
 Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code C40RC
 Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
 Camp Pendleton, California

7. Professor Tom Otani
 Naval Postgraduate School
 Monterey, California

8. Professor Man-Tak Shing
 Naval Postgraduate School
 Monterey, California

